三步教你部署一个简单的私人领域搜索引擎-动手实现一个最简单的RAG应用

什么是RAG
大模型也不是万能的,也有局限性。

LLM 的知识不是实时的
LLM 可能不知道你私有的领域/业务知识
RAG(Retrieval Augmented Generation)顾名思义:通过检索的方法来增强生成模型的能力。你可以把这个过程想象成开卷考试。让 LLM 先翻书,再回答问题。

  1. RAG基本流程

    image.png

  2. 看图就很容易理解RAG的流程了:

(1)私有知识通过切分、向量化保存到向量数据库中,供后续使用

(2)用户提问时,将用户提问用同样的方式向量化,然后去向量数据库中检索

(3)检索出相似度最高的k个切分段落

(4)将检索结果和用户的提问放到Prompt模板中,组装成一个完整的Prompt

(5)组装好的Prompt给大模型,让大模型生成回答

理想状态下,大模型是完全依赖检索出的文档片段进行组织答案的

简化一下,可以看出RAG有两大过程:

加载文档,生成向量数据库
查询向量数据库,询问大模型得到答案
下面我们一步步拆解,深入了解下RAG的流程和实现RAG所需的基本模块。

  1. 向量数据库的生成
    2.1 文档加载与分块
    首先加载我们私有的知识库。这里以加载PDF文件为例。Python提供了加载PDF的一些库,这里用 pdfminer。

安装 pdfminer:

bash
复制代码
pip install pdfminer.six

先看代码:


python
复制代码
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer

class PDFFileLoader():
def __init__(self, file) -> None:
self.paragraphs = self.extract_text_from_pdf(file, page_numbers=[0,3])
i = 1
for para in self.paragraphs[:3]:
print(f"========= 第{i}段 ==========")
print(para+"\n")
i += 1
def getParagraphs(self):
    return self.paragraphs

################################# 文档的加载与切割 ############################
def extract_text_from_pdf(self, filename, page_numbers=None):
    '''从 PDF 文件中(按指定页码)提取文字'''
    paragraphs = []
    buffer = ''
    full_text = ''
    # 提取全部文本
    for i, page_layout in enumerate(extract_pages(filename)):
        # 如果指定了页码范围,跳过范围外的页
        if page_numbers is not None and i not in page_numbers:
            continue
        for element in page_layout:
            if isinstance(element, LTTextContainer):
                full_text += element.get_text() + '\n'
  
    # 段落分割
    lines = full_text.split('。\n')
    for text in lines:
        buffer = text.replace('\n', ' ')
  
        if buffer:
            paragraphs.append(buffer)
            buffer = ''
            row_count = 0
  
    if buffer:
        paragraphs.append(buffer)
    return paragraphs
PDFFileLoader("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")

代码解释
(1)我们首先定义了一个 PDFFileLoader 的类,接收一个PDF文件路径。然后类内部调用extract_text_from_pdf去解析PDF文件并分段。

(2)extract_text_from_pdf中前半部分代码是利用 extract_pages 按页提取出PDF文件中的文字,然后组装成 full_text 。

(3)extract_text_from_pdf中后半部分代码是将 full_text 进行段落划分。

说明:因为每个PDF提取出来的文字格式可能不同,有的每一行后面都带有"\n\n",有的不带有"\n\n",有的每一行中的单词都粘在一起…,各种各样,所以PDF文字划分和段落分割的算法都无法做到完美适应所有PDF。本文重点不再这,所以粗暴地根据"。\n"划分了段落。实际应用中这里你应该按照你的PDF文件去进行调试和分割,段落划分这几行代码不能直接用。

可以简单看下我为什么能如此粗暴的划分段落:通过extract_pages提取出来的文本如下:

'如何向 ChatGPT 提问以获得高质量答案:提示\n技巧工程完全指南\n\n介绍\n\n我很高兴欢迎您阅读我的最新书籍《The Art of Asking ChatGPT for High-Quality Answers: A complete \n\nGuide to Prompt Engineering Techniques》。本书是一本全面指南,介绍了各种提示技术,用于从\n\nChatGPT中生成高质量的答案。\n\n我们将探讨如何使用不同的提示工程技术来实现不同的目标。ChatGPT是一款最先进的语言模型,能够生成\n\n类似人类的文本。然而,理解如何正确地向ChatGPT提问以获得我们所需的高质量输出非常重要。而这正是\n本书的目的。\n\n无论您是普通人、研究人员、开发人员,还是只是想在自己的领域中将ChatGPT作为个人助手的人,本书都\n是为您编写的。我使用简单易懂的语言,提供实用的解释,并在每个提示技术中提供了示例和提示公式。通\n\n过本书,您将学习如何使用提示工程技术来控制ChatGPT的输出,并生成符合您特定需求的文本。\n\n在整本书中,我们还提供了如何结合不同的提示技术以实现更具体结果的示例。我希望您能像我写作时一\n\n样,享受阅读本书并从中获得知识。\n\n \n\n

与原文对比,大体上按"。\n"来分割能与实际段落比较接近,所以本例我就先这样干了。这实际是不能用于实际项目的:

image.png

分割结果(打印前三段):

image.png

2.2 创建向量数据库

本文以 chromadb 向量数据库为例进行实操。

安装向量数据库chromadb

python
复制代码
pip install chromadb

2.2.1 创建过程

(1)创建一个向量数据库类。该类add_documents函数用来添加数据,它需要三个参数:

文档的向量
文档的原文
文档的id

python
复制代码
import chromadb
from chromadb.config import Settings

class MyVectorDBConnector:
def __init__(self, collection_name, embedding_fn):
chroma_client = chromadb.Client(Settings(allow_reset=True))
    # 为了演示,实际不需要每次 reset()
    chroma_client.reset()

    # 创建一个 collection
    self.collection = chroma_client.get_or_create_collection(name=collection_name)
    self.embedding_fn = embedding_fn

def add_documents(self, documents):
    '''向 collection 中添加文档与向量'''
    self.collection.add(
        embeddings=self.embedding_fn(documents),  # 每个文档的向量
        documents=documents,  # 文档的原文
        ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
    )

def search(self, query, top_n):
    '''检索向量数据库'''
    results = self.collection.query(
        query_embeddings=self.embedding_fn([query]),
        n_results=top_n
    )
    return results

(2)文档的向量怎么来?可以通过OpenAI的embeddings接口计算得到:

python
复制代码
from openai import OpenAI
import os加载环境变量from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())  # 读取本地 .env 文件,里面定义了 OPENAI_API_KEYclient = OpenAI()def get_embeddings(texts, model="text-embedding-3-small"):
'''封装 OpenAI 的 Embedding 模型接口'''
print(texts)
print(model)
data = client.embeddings.create(input=texts, model=model).data
print(data)
return [x.embedding for x in data]

(3)调用接口,创建向量数据库

python
复制代码创建一个向量数据库对象vector_db = MyVectorDBConnector("demo", get_embeddings)向向量数据库中添加文档vector_db.add_documents(pdf_loader.getParagraphs())

(4)测试查询

python
复制代码
user_query = "什么是角色提示?"
results = vector_db.search(user_query, 3) # 3是指查询出最相近的3块文本
for para in results['documents'][0]:
print(para+"\n\n")

2.2.2 运行结果

(1)通过OpenAI的embeddings接口计算得到的文本向量

image.png

(2)查询结果,查找出最相近的3块文本

image.png

2.2.3 踩坑
2.2.3.1 坑一:NoneType object is not iterable

image.png

原因:传入的分块有空字符的情况。

不知道这种情况为什么会导致NoneType的错误,可能是OpenAI向量化时对特殊字符进行了去除?

image.png

解决方法:保证分块中没有全是特殊字符的分块即可。
2.2.3.2 坑二:Number of embeddings 9 must match number of ids 10

image.png

原因:可以看下下面的代码,上面的错误指的是embeddings是9个值,而ids有10个值。这是因为在解决坑一时,将里面最后那个空的文档分块去掉了,没去生成embeddings。

python
复制代码
self.collection.add(
embeddings=self.embedding_fn(documents),  # 每个文档的向量
documents=documents,  # 文档的原文
ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
)

解决方法:保证documents和embeddings的数组大小长度一致。
以上两个坑总体的解决方案代码,看下里面修改的部分(注释部分),在段落分割部分就把异常的分块去掉,从源头上保证documents的正常以及后面documents和embeddings数组大小一致:

python
复制代码段落分割lines = full_text.split('。\n')
for text in lines:
buffer = text.strip(' ').replace('\n', ' ').replace('[', '').replace(']', '') ## 1. 去掉特殊字符
if len(buffer) < 10: ## 2. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
continue
if buffer:
paragraphs.append(buffer)
buffer = ''
row_count = 0if buffer and len(buffer) > 10: ## 3. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
paragraphs.append(buffer)
return paragraphs

注意:文档分块不一定是按段落分。

Prompt模板

  • 上面我们已经拿到了检索回来的相关文档。下面我们写一个Prompt模板用来组装这些文档以及用户的提问。
python
复制代码
def build_prompt(prompt_template, **kwargs):
'''将 Prompt 模板赋值'''
prompt = prompt_template
for k, v in kwargs.items():
if isinstance(v,str):
val = v
elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):
val = '\n'.join(v)
else:
val = str(v)
prompt = prompt.replace(f"{k.upper()}",val)
return promptprompt_template = """
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。
确保你的回复完全依据下述已知信息。不要编造答案。
如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。已知信息:
INFO用户问:
QUERY请用中文回答用户问题。
"""

注意以上最重要的提示词,要求大模型完全按照给定的文本回答问题:

你的任务是根据下述给定的已知信息回答用户问题。 确保你的回复完全依据下述已知信息。不要编造答案。 如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

  1. 使用大模型得到答案
    4.1 封装OpenAI接口

    python
    复制代码
    def get_completion(prompt, model="gpt-3.5-turbo-1106"):
    '''封装 openai 接口'''
    messages = [{"role": "user", "content": prompt}]
    response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=0,  # 模型输出的随机性,0 表示随机性最小
    )
    return response.choices[0].message.content
    

    4.2 组装Prompt

    python
    复制代码
    prompt = build_prompt(prompt_template, info=results['documents'][0], query=user_query)
    print(prompt)
    

    运行结果

    image.png

4.3 使用大模型得到答案

python
复制代码
response = get_completion(prompt)
print(response)

运行结果

image.png

  1. 总结
    至此,我们已经实现了RAG的基本流程。总结下流程:

离线部分,可提前生成好

(1)文档加载与分块

(2)分块数据灌入向量数据库

在线部分

(3)解析用户提问,用户提问向量化

(4)查询向量数据库,得到最相似的k个文本块

(5)使用得到的k个文本块和用户提问组装Prompt模板

(6)询问大模型得到最终答案

5.1 封装RAG
我们将RAG流程封装一下,createVectorDB完成离线部分,创建出向量数据库和灌入数据。chat完成在线部分。

python
复制代码
class RAG_Bot:
def __init__(self, n_results=2):
self.llm_api = get_completion
self.n_results = n_results
def createVectorDB(self, file):
    print(file)
    pdf_loader = PDFFileLoader(file)
    # 创建一个向量数据库对象
    self.vector_db = MyVectorDBConnector("demo", get_embeddings)
    # 向向量数据库中添加文档,灌入数据
    self.vector_db.add_documents(pdf_loader.getParagraphs())

def chat(self, user_query):
    # 1. 检索
    search_results = self.vector_db.search(user_query,self.n_results)
  
    # 2. 构建 Prompt
    prompt = build_prompt(prompt_template, info=search_results['documents'][0], query=user_query)
  
    # 3. 调用 LLM
    response = self.llm_api(prompt)
    return response

使用

python
复制代码
rag_bot = RAG_Bot()
rag_bot.createVectorDB("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")
response = rag_bot.chat("什么是角色提示?")
print("response=====================>")
print(response)

5.2 完整代码

python
复制代码
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer

class PDFFileLoader():
def __init__(self, file) -> None:
self.paragraphs = self.extract_text_from_pdf(file, page_numbers=[0,3])
i = 1
for para in self.paragraphs:
print(f"========= 第{i}段 ==========")
print(para+"\n")
i += 1
def getParagraphs(self):
    return self.paragraphs

################################# 文档的加载与切割 ############################
def extract_text_from_pdf(self, filename, page_numbers=None):
    '''从 PDF 文件中(按指定页码)提取文字'''
    paragraphs = []
    buffer = ''
    full_text = ''
    # 提取全部文本
    for i, page_layout in enumerate(extract_pages(filename)):
        # 如果指定了页码范围,跳过范围外的页
        if page_numbers is not None and i not in page_numbers:
            continue
        for element in page_layout:
            if isinstance(element, LTTextContainer):
                full_text += element.get_text() + '\n'
  
    # 段落分割
    lines = full_text.split('。\n')
    for text in lines:
        buffer = text.strip(' ').replace('\n', ' ').replace('[', '').replace(']', '') ## 1. 去掉特殊字符
        if len(buffer) < 10: ## 2. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
            continue
        if buffer:
            paragraphs.append(buffer)
            buffer = ''
            row_count = 0
  
    if buffer and len(buffer) > 10: ## 3. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
        paragraphs.append(buffer)
    return paragraphs
# pdf_loader = PDFFileLoader("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")

from openai import OpenAI
import os

# 加载环境变量

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())  # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY

client = OpenAI()

def get_embeddings(texts, model="text-embedding-3-small"):
'''封装 OpenAI 的 Embedding 模型接口'''
data = client.embeddings.create(input=texts, model=model).data
return [x.embedding for x in data]

import chromadb
from chromadb.config import Settings

class MyVectorDBConnector:
def __init__(self, collection_name, embedding_fn):
chroma_client = chromadb.Client(Settings(allow_reset=True))

# 为了演示,实际不需要每次 reset()
chroma_client.reset()

# 创建一个 collection
self.collection = chroma_client.get_or_create_collection(name=collection_name)
self.embedding_fn = embedding_fn
def add_documents(self, documents):
'''向 collection 中添加文档与向量'''
self.collection.add(
embeddings=self.embedding_fn(documents),  # 每个文档的向量
documents=documents,  # 文档的原文
ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
)

def search(self, query, top_n):
'''检索向量数据库'''
results = self.collection.query(
query_embeddings=self.embedding_fn([query]),
n_results=top_n
)
return results
# # 创建一个向量数据库对象

# vector_db = MyVectorDBConnector("demo", get_embeddings)

# # 向向量数据库中添加文档

# vector_db.add_documents(pdf_loader.getParagraphs())

# user_query = "什么是角色提示?"

# results = vector_db.search(user_query, 3)

# for para in results['documents'][0]:

# print(para+"\n\n")

def build_prompt(prompt_template, **kwargs):
'''将 Prompt 模板赋值'''
prompt = prompt_template
for k, v in kwargs.items():
if isinstance(v,str):
val = v
elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):
val = '\n'.join(v)
else:
val = str(v)
prompt = prompt.replace(f"__{k.upper()}__",val)
return prompt

prompt_template = """
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。
确保你的回复完全依据下述已知信息。不要编造答案。
如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

已知信息:
__INFO__

用户问:
__QUERY__

请用中文回答用户问题。
"""

########################### 大模型接口封装 #############################

def get_completion(prompt, model="gpt-3.5-turbo-1106"):
'''封装 openai 接口'''
messages = [{"role": "user", "content": prompt}]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0,  # 模型输出的随机性,0 表示随机性最小
)
return response.choices[0].message.content

# prompt = build_prompt(prompt_template, info=results['documents'][0], query=user_query)

# print(prompt)

# response = get_completion(prompt)

# print(response)

##################################  基于向量检索的 RAG ##################
class RAG_Bot:
def __init__(self, n_results=2):
self.llm_api = get_completion
self.n_results = n_results

def createVectorDB(self, file):
print(file)
pdf_loader = PDFFileLoader(file)
# 创建一个向量数据库对象
self.vector_db = MyVectorDBConnector("demo", get_embeddings)
# 向向量数据库中添加文档,灌入数据
self.vector_db.add_documents(pdf_loader.getParagraphs())

def chat(self, user_query):
# 1. 检索
search_results = self.vector_db.search(user_query,self.n_results)
# 2. 构建 Prompt
prompt = build_prompt(prompt_template, info=search_results['documents'][0], query=user_query)
print("prompt===================>")
print(prompt)

# 3. 调用 LLM
response = self.llm_api(prompt)
return response

rag_bot = RAG_Bot()
rag_bot.createVectorDB("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")
response = rag_bot.chat("什么是角色提示?")
print("response=====================>")
print(response)
  1. 思考
    RAG 是一个增强大模型垂直领域能力和减少幻觉的通用方法论,所以了解其原理和流程对实现出效果较好的大模型应用非常有用。

但是上面也可以看到,它也限制了大模型使用其自身的知识库去回答问题,只能够用给定的文本回复问题。这就导致这个RAG应用的通用性大大降低。

另外,从RAG流程中也可以看到要想实现的效果好,也是困难重重:

(1)预处理: 首先文本分割的块要恰到好处

文本分割的粒度太小,查找到的参考文本较少
文本颗粒度太大,参考文本太多,消耗token,同时也会带入更多的干扰信息,导致大模型出现幻觉的概率增加
(2)有些问题的回答是需要依赖上下文的,怎样将上下文所在的文本块都找出来也不容易

(3)召回正确性:召回文档的相关性也对结果比较重要。查找出的文档虽然与用户提问的向量值比较相似,但某些时候,最相似的并不一定是与问题答案相关的

(4)大模型本身的能力对结果也比较重要

目前针对以上各个困难都有非常多的研究,还在快速发展阶段,未形成一套通用、效果好的方法论。

后面可以针对这部分进行深入探索和学习,关注和整理当下最新的RAG调优方法。

博客原文:https://closeai.cc/forum.php?mod=viewthread&tid=275

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值