大名鼎鼎的YOLOv3由于其速度快,精度高等特点,成为了目前学术界以及工业界最广为使用的目标检测模型之一。原始的YOLOv3是基于darknet框架下完成了,因此本文将详细讲述如何在Pytorch下使用YOLOv3模型训练自己的数据集并进行预测。
本文将分为四部分进行讲述:
-
环境配置
-
数据集准备
-
模型训练
-
模型预测
1.环境配置
1.1 Python环境安装
Python的编译环境非常之多,小伙伴们可以根据自己喜好来安装Anaconda,Pycharm等等,在此不做赘述,本文使用的是Pycharm社区版。
1.2 Pytorch安装
首先进入以下网址:https://pytorch.org/
在这里选择自己的系统,安装方式(conda安装,pip安装等等),语言(本文是Python),以及你的CUDA版本,就可以获得安装指令了。复制该条指令,打开CMD就可以进行pip安装或者conda安装了。
Tips1:如何查看自己的CUDA版本呢?
CUDA是Nvidia显卡特有的运算平台,能够在训练中使用GPU进行加速。如果你没有Nvidia独显或者只有AMD显卡,那就只能在上面的选项中选择“None”来安装CPU版本了。如果你拥有Nvidia独显,桌面右击,选择“Nvidia控制面板”,点击帮助,点击系统信息,点击组件,就可以看到你的CUDA版本啦,如下面三张图片所示。
Tips2:Pytorch安装太慢怎么办?
由于是国外的网站,经常会出现被墙的现象导致安装速度过慢甚至速度为0的现象。这里推荐大家使用清华镜像来进行安装,速度很快。方法如下。
打开CMD,逐步输入以下命令
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
然后键入你的安装指令,比如:
conda install pytorch torchvision cudatoolkit=10.1
2. 数据集准备
首先,我们需要下载代码:
https://github.com/ultralytics/yolov3