人工智能在材料科学的应用

人工智能在材料科学领域的应用日益显著,从2016年起,机器学习已经改变材料发现方式,提高了新材料研发效率。研究领域主要包括逆向分析、新材料发现和材料预测。通过数据挖掘、模型训练与优化,AI能预测材料性能,加速材料研发进程。尽管面临数据不足和实际合成挑战等问题,未来发展方向在于扩大材料数据库和新技术的突破。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能在材料科学的应用

1. 绪论

在传统的新材料开发方式及材料制作工艺中,材料科学研究者往往是通过实验与模拟的方法进行研发,所需要的工程量十分巨大并且获得的目标材料需要依赖一定的经验与运气,如何提供材料的研发效率成为了材料科学研究者的首要目标。而随着人工智能技术在众多领域的出色表现,越来越多的研究者也投入人工智能与材料科学的研究,并在两者的结合中取得了众多研究成果。 

2016年5月,Nature 将一篇机器学习算法改变材料发现方式的论文放上封面,并提出“从失败中学习”[1]:美国研究者利用机器学习算法,用失败的实验数据预测了新材料的合成,并且在实验中机器学习模型预测的准确率超过了经验丰富的化学家。这一研究意味着人工智能将改变传统材料发现方式,通过人工智能技术发明新材料的可能性也将大幅提高。

 

图 1‑1 2016年5月5日《Nature》封面

同月,Nature新闻专题的封面也刊登了一篇题为《人工智能将创造更优秀的材料?》(《Can artificial intelligence create the next wonder material?》)[1].[2]的文章。该文章认为,通过计算机建模和机器学习技术,可以很快地根据人们所需要的性能预测出相应候选材料。因此,科学家们将不再需要瞎猫撞死耗子般地制作新材料,而是按照计算机计算结果的指导,制作出相应候选材料并测试,从而加快了新材料的研发的速度和效率。

2020年7月在web of science数据库通过对关键词“machine learning”和“deep neural networks”检索,筛选关于材料化学能源领域发现,关于机器学习已经发表了6335篇。可见目前将人工智能技术应用在材料科学领域已经成为一大热点。

 

图 1‑2 web of science数据库检索结果

2. 基于人工智能技术的材料科学研究的发展

2.1 材料科学的发展阶段

根据研究方法的变革,可以将材料科学的发展分作4个阶段:经验测试阶段、理论研发阶段、计算模拟阶段[1].[3]、人工智能阶段。

(1) 经验测试阶段

在材料科学的早期,研究者往往是以经验科学为主进行材料研究。在该阶段研究者凭借对材料的长时间测试与应用,从而积累对材料特性的经验。该阶段研究者需要经历反复实验,新材料产生的周期长、效率低。

(2) 理论研发阶段

随着各领域研究的深入,材料科学的理论基础逐渐成熟起来,理论模型中的热力学模型的应用为材料研究提供了众多帮助,提高了新材料研究的效率。

(3) 计算模拟阶段

计算机的应用使得材料科学的研究进入了计算模拟阶段,一系列模拟计算方法大大提升了材料科学的研究。

(4) 人工智能阶段

随着人工智能技术的普及和机器学习深度学习技术在材料领域的应用,AI 技术与材料研发的结合逐渐紧密,并在材料设计领域发挥极其关键的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值