批量训练、参数保存与提取-pytorch

本文介绍了如何使用PyTorch处理简单回归问题的神经网络,包括数据预处理、小批量训练DataLoader的使用,以及网络参数的保存和提取。通过实例展示了数据加载器的创建和训练过程,并提供了关键函数如`saveNet`和`restoreNet`的操作指南。
摘要由CSDN通过智能技术生成

简单回归问题

以简单回归问题为例,实现神经网络的小批量训练、网络参数保存以及参数提取。
简单回归问题的神经网络实现可见:【简单回归问题的神经网络实现-pytorch】

dataLoader定义

dataLoader是torch提供用于封装数据的工具,可以有效实现网络训练过程中的批量训练问题。

#生成DataLoader数据结构
def dataLoader(x,y):
    #将torch转换为Dataset
    torch_dataset = Data.TensorDataset(x, y)
    #将dataset放入DataLoader
    loader = Data.DataLoader(
        dataset=torch_dataset,
        batch_size=20,      #最小训练批量
        shuffle=True,       #是否对数据进行随机打乱
        num_workers=2,      #多线程来读数据
    )
    return loader

使用方法如下:

	#模拟数据
    x,y=dataSet()
    loader=dataLoader(x,y)
	#迭代训练
    for epoch in range(40):
        lossAll=0
        for step, (batch_x, batch_y) in enumerate(loader):
            #预测
            prediction=net(batch_x)
            #计算误差
            loss=loss_fun(prediction,batch_y)
            lossAll+=loss.data.numpy()
            #梯度降为0
            optimizer.zero_grad()
            #反向传递
            loss.backward()
            #优化梯度
            optimizer.step()
            #打印误差
            print('Epoch: ', epoch, '| Step: ', step, '| loss: ',loss.data.numpy())

迭代过程如下:
在这里插入图片描述

参数保存

#保存网络
def saveNet(net,params=False):
    if params:
        #保存网络参数
        torch.save(net.state_dict(),'net_params.pkl')
    else:
        #保存整个网络
        torch.save(net,'net.pkl')

参数提取

#提取网络
def restoreNet(params=False):
    if params:
        #提取网络参数->注意需要新建一个相同类型的网络
        net1=Net(1,[10,20],1)
        net1.load_state_dict(torch.load('net_params.pkl'))
    else:
        #保存整个网络
        net1 = torch.load('net.pkl')

====================================
今天到此为止,后续记录其他神经网络技术的学习过程。
以上学习笔记,如有侵犯,请立即联系并删除!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南音小榭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值