手把手教你:基于 AnythingLLM API 训练并调用本地知识库

引言

在人工智能技术快速发展的今天,企业对于数据安全和隐私保护的需求日益增强。基于检索增强生成(Retrieval-Augmented Generation, RAG)的本地知识库系统,成为解决大模型知识局限性和幻觉问题的关键方案。本文将以 Ollama 和 AnythingLLM 为核心工具,详细介绍如何通过API实现企业本地知识库的训练与调用,并提供完整的Python代码示例及执行效果分析,助力企业构建安全高效的私有化知识管理系统。

tip:
本篇文中用于接上一篇做续,真正工业化 rag 流程,后续会持续更新,目前这套比较适合知识库更新不频繁,公司内协作流程,部门内知识库构建基本满足使用,二手 4060 显卡也基本满足,工业化还需要更精细的技术解决方案,后续再更新,大家拿这套先玩着。


一、工具与技术背景

1.1 RAG技术原理

RAG通过结合大语言模型(LLM)的生成能力与外部知识库的检索功能,显著提升回答的准确性和专业性。其核心流程包括:

  1. 知识库构建:将企业文档转化为向量并存储于向量数据库;
  2. 检索增强:根据用户问题检索相关文档片段;
  3. 生成回答:LLM结合检索结果生成最终响应。

1.2 AnythingLLM与Ollama简介

  • Ollama:开源本地大模型管理工具,支持一键部署Llama、Gemma等模型,提供REST API接口。
  • AnythingLLM:企业级知识库管理平台,支持多格式文档上传、向量数据库集成及灵活的API调用,适用于构建私有化问答系统。

组合优势:本地化部署保障数据安全,灵活支持多模型切换,降低企业AI应用门槛。


  • 访问http://localhost:3001,选择Ollama作为LLM Provider,填写Base URL为http://host.docker.internal:11434
  • 选择预加载的模型(如deepseek-r1:8b)。

二、知识库训练实战

2.1 文档上传与嵌入处理

1. 通过UI上传文档:
  • 支持PDF、TXT、DOCX等格式,单个文件可达500MB。
  • 示例:这里录入一本道德经做测试。




如果你用过 swagger,那点击阅读 api 文档,你会很熟悉,下面接口调用部分可以忽略了,自行玩吧。

本地也可以访问:http://localhost:3001/api/docs/

点开 api 文档中,authorize,将生成的 apikey 录入:

调用接口测试是否成功:

运行第一个借口/v1/auth,如果返回截图中的结果,即调用成功。

2. 创建工作区:
import requests

# 替换为实际的 API 端点
api_url = "http://localhost:3001/api/v1/workspace/new"

# 身份验证,设置请求头
headers = {
    "accept": "application/json",
    "Authorization": "Bearer your_api_key",  #注意,替换apikey一定要保留Bearer 
    "Content-Type": "application/json"
}

# 准备创建工作区所需的数据
workspace_data = {   
    "name": "New Workspace", #我这里创建的 ddj,替换成你的工作空间
    "similarityThreshold": 0.7,    
    "openAiTemp": 0.7,  
    "openAiHistory": 20, 
    "openAiPrompt": "Custom prompt for responses",    
    "queryRefusalResponse": "Custom refusal message",    
    "chatMode": "chat",   
    "topN": 4
}

try:
    # 发送 POST 请求
    response = requests.post(api_url, headers=headers, json=workspace_data)

    # 检查响应状态码
    if response.status_code == 200:  # 200 表示创建成功
        result = response.json()
        print("工作区创建成功:", result)
    else:
        print(f"工作区创建失败,状态码:{response.status_code},错误信息:{response.text}")
except requests.RequestException as e:
    print(f"请求发生错误:{e}")

执行输出如下结果,则为成功,如果不成功,仔细看我上面的每一行代码 注释地方要特别注意。

#如下结果则执行成功
{
  "workspace": {
    "id": 4,
    "name": "ddj",
    "slug": "ddj",
    "vectorTag": null,
    "createdAt": "2025-02-10T16:14:58.744Z",
    "openAiTemp": 0.7,
    "openAiHistory": 20,
    "lastUpdatedAt": "2025-02-10T16:14:58.744Z",
    "openAiPrompt": "Custom prompt for responses",
    "similarityThreshold": 0.7,
    "chatProvider": null,
    "chatModel": null,
    "topN": 4,
    "chatMode": "chat",
    "pfpFilename": null,
    "agentProvider": null,
    "agentModel": null,
    "queryRefusalResponse": "Custom refusal message",
    "vectorSearchMode": "default"
  },
  "message": null
}
3. 执行嵌入操作(文档上传):
# Python调用AnythingLLM文档上传API   
import requests   
headers = {       
    "Authorization": "Bearer YOUR_API_KEY",       
    "accept": "application/json"   }   
files = {'file': open('product_guide.pdf', 'rb')}   
response = requests.post(       
    'http://localhost:3001/api/v1/workspace/{workspace_id}/document',       
    headers=headers,       
    files=files   
)   
print(response.json())  # 返回文档ID及处理状态   ``  

关键参数:

  • workspace_id: 目标工作区ID(可通过GET /api/v1/workspaces获取),也可以在 swagger 中调用,如下(屏幕不够大,截图范围有限,不过核心的都截到了)file

2.2 向量数据库管理- 默认数据库:LanceDB(无需额外配置)。

  • 高级选项:支持Chroma、Pinecone等数据库,优化检索性能。后期会出针对文档向量化的方法,这块有很多细节需要注意,目前先将整个流程走通。

三、API调用与问答系统开发

3.1 生成API密钥

  1. 在AnythingLLM设置界面创建API Key,权限设置为Full Access
  2. 密钥格式:Bearer {API_KEY},需加入请求头。

3.2 Python调用示例

import requests
import jsondef 
ask_anythingllm(question, workspace_name, api_key):    
url = f"http://localhost:3001/api/v1/workspace/{workspace_name}/chat"    
headers = {        
    "Authorization": f"Bearer {api_key}",        
    "Content-Type": "application/json",        
    "accept": "application/json"    
}    
data = {        
    "message": question,        
    "mode": "query"  # 可选chat/query模式    
}    
response = requests.post(url, headers=headers, json=data)    
if response.status_code == 200:        
    result = response.json()        
    # 提取有效回答(去除思考过程)        
    answer = result['textResponse'].split('</think>')[-1].strip()        
    sources = result.get('sources', [])        
    return answer, sources    
else:        
    return f"Error: {response.text}", []
    # 示例调用
    api_key = "your_api_key"  #替换成你自己的apikey
    workspace = "product_kb"
    question = "道德经讲的是什么,用50个字概括"
    answer, sources = ask_anythingllm(question, workspace, api_key)
    print("回答:", answer)
    print("来源:", [src['title'] for src in sources])

执行效果:

回答: 道德经讲的是“无为而治、柔弱胜刚强、厚积薄发”,强调以智慧和德行为本,以柔克刚,顺其自然,实现内心与外在的平衡。
来源: ['ddj.txt']

3.3 高级功能扩展

  • 多工作区隔离:为不同部门创建独立知识库。
  • 对话历史管理:通过chatId参数实现多轮对话上下文保持。

四、优化与故障排查

4.1 性能调优建议

  • 模型选择:根据硬件配置选择模型尺寸(如deepseek-r1:8b vs 70b)。
  • 分块策略:调整文档分割大小(默认512 tokens)以平衡精度与速度。

4.2 常见问题解决

问题现象解决方案
API返回403错误检查API密钥权限及有效期
文档嵌入失败确认文件格式兼容性,尝试重新上传
响应速度慢增加Ollama的num_ctx参数提升上下文容量
api执行报错建议用swager上测试,没问题再编辑代码,如果执行不下去,尝试切换anythingllm 版本
### 如何在Python 3中使用AnythingLLM API 为了利用AnythingLLM提供的服务,在Python环境中集成其功能,开发者需先获取API密钥安装必要的库。这可以通过访问官方文档完成相应操作来实现[^1]。 #### 获取API密钥 任何想要调用API的服务都需要一个唯一的标识符——即API密钥。对于AnythingLLM而言也不例外,用户应当前往官方网站注册账号,按照指引申请专属的API密钥用于后续开发工作。 #### 安装依赖包 通常情况下,与RESTful风格的Web Service交互最常用的方式就是借助`requests`这样的HTTP客户端库来进行网络请求发送。因此建议确保项目中有此模块的支持: ```bash pip install requests ``` #### 发送请求至AnythingLLM API 下面给出了一段简单的Python脚本作为例子展示如何向AnythingLLM发起GET请求以及处理返回的数据结构。请注意替换掉示例中的`YOUR_API_KEY_HERE`为实际获得的有效API密钥字符串。 ```python import requests api_key = "YOUR_API_KEY_HERE" url = f"https://api.anythingllm.com/v1/models?api_key={api_key}" response = requests.get(url) if response.status_code == 200: data = response.json() print(data) else: print(f"Error {response.status_code}: {response.text}") ``` 这段代码展示了基本的查询模型列表的功能;当然根据需求还可以构建更复杂的POST/PUT/PATCH等类型的请求体去执行创建、更新资源的操作。更多细节可以参阅官方提供的完整版API手册。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值