本文记录了FATE框架中横向和纵向联邦学习的案例使用,并与笔者近期使用过的谷歌TFF(TensorFlow-Federated)框架对比,阐述使用感受。
1 横向联邦学习案例
在本节中,以逻辑回归为例记录横向联邦学习案例使用。
实验设置
数据集:信用数据,位置FATE/examples/data/default_credit_homo_guest/host.csv
算法:logistics regression
文件说明
1.上传数据json文件
upload_my_homolr_guest.json,upload_my_homolr_host.json
其中file字段用于指定数据存储位置;
head字段指明数据是否包含头;
partition字段指定数据划分数;
work_mode字段表示工作模式(单节点/集群);
namespace和table_name由用户指定,需要与运行时配置文件中相应字段对应。
2.组件
test_my_homolr_train_dsl.json
这里使用了DataIO、HomoLR和Evaluation三个组件,需要注意各个组件之间的输入输出数据关系;
要使用其他组件,可以参考官方文档中的说明。
3.运行时配置文件
test_my_homolr_train_conf.json
initiator设置了联邦发起者的角色和id