联邦学习框架FATE使用案例记录

本文详细记录了FATE框架下横向和纵向联邦学习的案例,包括实验设置、步骤与结果分析。对比了FATE与谷歌的TFF框架在部署、应用场景、上手难度、可视化、调试、GPU支持及使用场景等方面的差异,提供了实用的使用感受和建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文记录了FATE框架中横向和纵向联邦学习的案例使用,并与笔者近期使用过的谷歌TFF(TensorFlow-Federated)框架对比,阐述使用感受。

1 横向联邦学习案例

在本节中,以逻辑回归为例记录横向联邦学习案例使用。

实验设置

数据集:信用数据,位置FATE/examples/data/default_credit_homo_guest/host.csv
算法:logistics regression

文件说明

1.上传数据json文件
upload_my_homolr_guest.json,upload_my_homolr_host.json

其中file字段用于指定数据存储位置;
head字段指明数据是否包含头;
partition字段指定数据划分数;
work_mode字段表示工作模式(单节点/集群);
namespace和table_name由用户指定,需要与运行时配置文件中相应字段对应。

2.组件
test_my_homolr_train_dsl.json

这里使用了DataIO、HomoLR和Evaluation三个组件,需要注意各个组件之间的输入输出数据关系;
要使用其他组件,可以参考官方文档中的说明。

3.运行时配置文件
test_my_homolr_train_conf.json

initiator设置了联邦发起者的角色和id
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值