电磁学乱七八糟的符号(四)

本文深入探讨了电磁波在波导中的传输特性,重点介绍了纵向场量法和矩形波导中的TM与TE波。通过解析波动方程,详细分析了TEM波的存在条件、传播特性及波阻抗等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电磁学乱七八糟的符号(四)

@(study)[Maxe, markdown_study, LaTex_study]

author:何伟宝


这里重点是一般传输规律矩形波导,chapter6 电磁波的传输

纵向场量法

说白了也就是从麦克斯韦方程式抽象出我们需要的波动方程,流程如下:
peocess

矢量波动方程

在无源自由空间场量中(由麦克斯韦方程式):
(1.1) ∇ 2 E ⃗ + k 2 E ⃗ = 0 \nabla^2 \vec E+k^2\vec E=0 \tag{1.1} 2E +k2E =0(1.1)
(1.2) ∇ 2 H ⃗ + k 2 H ⃗ = 0 \nabla^2 \vec H+k^2\vec H=0 \tag{1.2} 2H +k2H =0(1.2)
在波导中,设电磁波沿着z轴传输:
(1.3) E ⃗ ( x , y , z ) = E ⃗ ( x , y ) e γ r \vec E(x,y,z) = \vec E(x,y)e^{\gamma r } \tag{1.3} E (x,y,z)=E (x,y)eγr(1.3)
(1.4) H ⃗ ( x , y , z ) = H ⃗ ( x , y ) e γ r \vec H(x,y,z) = \vec H(x,y)e^{\gamma r } \tag{1.4} H (x,y,z)=H (x,y)eγr(1.4)
其中有:

行波因子 γ \gamma γ

在上一章说过他也是一个传播常数,当 γ \gamma γ为实数时,信号衰减.虚数时信号传播,且波数为其虚部

矢量分解

这里有意地把纵横量分开了:
E ⃗ = ( a ⃗ x E x + a ⃗ y E y ) + a ⃗ z E z \vec E = (\vec a_x E_x+\vec a_y E_y) + \vec a_z E_z E =(a xEx+a yEy)+a zEz
H ⃗ = ( a ⃗ x H x + a ⃗ y H y ) + a ⃗ z H z \vec H = (\vec a_x H_x+\vec a_y H_y) + \vec a_z H_z H =(a xHx+a yHy)+a zHz
顺便把拉普拉斯算符 ∇ \nabla 也分开:
∇ t 2 = ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) + ∂ 2 ∂ z 2 = ∇ x y 2 + ∂ 2 ∂ z 2 \nabla_t^2 = (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2})+ \frac {\partial^2}{\partial z^2}=\nabla^2_{xy}+\frac {\partial^2}{\partial z^2} t2=(x22+y22)+z22=xy2+z22

标量波动方程

将矢量分解的三个方程先带入(1.3)(1.4)再代入(1.1)(1.2),只截取纵向分量得:

∇ x y 2 E ⃗ z + ( k 2 + γ 2 ) E ⃗ z = 0 \nabla^2_{xy}\vec E_z+(k^2+\gamma^2)\vec E_z=0 xy2E z+(k2+γ2)E z=0
∇ x y 2 H ⃗ z + ( k 2 + γ 2 ) H ⃗ z = 0 \nabla^2_{xy}\vec H_z+(k^2+\gamma^2)\vec H_z=0 xy2H z+(k2+γ2)H z=0

再将上式改写成(1.3)(1.4)形式:
E z ( x , y , z ) = E z ( x , y ) E − γ z E_z(x,y,z) = E_z(x,y)E^{-\gamma z} Ez(x,y,z)=Ez(x,y)Eγz
H z ( x , y , z ) = H z ( x , y ) H − γ z H_z(x,y,z) = H_z(x,y)H^{-\gamma z} Hz(x,y,z)=Hz(x,y)Hγz

考虑麦克斯韦方程的旋度式:
∇ × E ⃗ = − j ω μ H ⃗ \nabla \times \vec E=-j\omega \mu \vec H ×E =jωμH
∇ × H ⃗ = j ω ε E ⃗ \nabla\times\vec H =j\omega\varepsilon \vec E ×H =jωεE
联立上四式可得六个标量方程:

(标量1) ∂ E z ∂ y + γ E y = − j ω μ H x \frac{\partial E_z}{\partial y}+\gamma E_y = -j\omega \mu H_x \tag{标量1} yEz+γEy=jωμHx(1)
(标量2) − γ E x − ∂ E z ∂ x = − j ω μ H y -\gamma E_x -\frac{\partial E_z}{\partial x}=-j\omega \mu H_y \tag{标量2} γExxEz=jωμHy(2)
(标量3) ∂ E y ∂ x − ∂ E x ∂ x = − j ω μ H z \frac{\partial E_y}{\partial x}-\frac{\partial E_x}{\partial x}=-j\omega \mu H_z \tag{标量3} xEyxEx=jωμHz(3)
千万不要慌,由麦克斯韦美好的对称性可以知道,我们只要算一对叉乘就可以了,由对称性:
(标量4) ∂ H z ∂ y + γ H y = j ω ε E x \frac{\partial H_z}{\partial y}+\gamma H_y = j\omega \varepsilon E_x \tag{标量4} yHz+γHy=jωεEx(4)
(标量5) − γ H x − ∂ H z ∂ x = j ω ε E y -\gamma H_x -\frac{\partial H_z}{\partial x}=j\omega \varepsilon E_y \tag{标量5} γHxxHz=jωεEy(5)
(标量6) ∂ H y ∂ x − ∂ H x ∂ x = j ω ε E z \frac{\partial H_y}{\partial x}-\frac{\partial H_x}{\partial x}=j\omega \varepsilon E_z \tag{标量6} xHyxHx=jωεEz(6)

纵横关系式

联立以上六式可得(解这个会有点痛苦,但是这不重要)纵横关系式:

(e.x) E x = − 1 k c 2 ( γ ∂ E z ∂ x + j ω μ ∂ H z ∂ y ) E_x = -\frac {1} {k_c^2}(\gamma\frac{\partial E_z}{\partial x}+j\omega\mu\frac{\partial H_z}{\partial y})\tag{e.x} Ex=kc21(γxEz+jωμyHz)(e.x)
(e.y) E y = − 1 k c 2 ( γ ∂ E z ∂ y − j ω μ ∂ H z ∂ x ) E_y = -\frac {1} {k_c^2}(\gamma\frac{\partial E_z}{\partial y}-j\omega\mu\frac{\partial H_z}{\partial x})\tag{e.y} Ey=kc21(γyEzjωμxHz)(e.y)
(h.x) H x = − 1 k c 2 ( γ ∂ H z ∂ x − j ω μ ∂ E z ∂ y ) H_x = -\frac {1} {k_c^2}(\gamma\frac{\partial H_z}{\partial x}-j\omega\mu\frac{\partial E_z}{\partial y})\tag{h.x} Hx=kc21(γxHzjωμyEz)(h.x)
(h.y) E x = − 1 k c 2 ( γ ∂ H z ∂ x + j ω μ ∂ E z ∂ x ) E_x = -\frac {1} {k_c^2}(\gamma\frac{\partial H_z}{\partial x}+j\omega\mu\frac{\partial E_z}{\partial x})\tag{h.y} Ex=kc21(γxHz+jωμxEz)(h.y)
其中:
k c 2 = k 2 + γ 2 k_c^2=k^2+\gamma^2 kc2=k2+γ2
如果不用书本的表示方法的话,你会发现一点公式的美学…

自此,纵向常量法就介绍完成了.这里的重点在于纵横关系式

各种导波的一般传输特性

概述

这一小节解决的问题是,某种电磁波要在波导中传输的存在可能性问题.重点有TEM,TE,TM波等.并且提供假设各种波存在的时候,怎么求解波动方程的思路.

TEM横电磁波

还是回到我们熟悉的波动方程,可以把上面的纵横关系式:
(波动1) ∇ x y 2 E z + k c 2 E z = 0 \nabla^2_{xy}E_z + k_c^2 E_z=0 \tag{波动1} xy2Ez+kc2Ez=0(1)
(波动2) ∇ x y 2 H z + k c 2 H z = 0 \nabla^2_{xy}H_z + k_c^2 H_z=0 \tag{波动2} xy2Hz+kc2Hz=0(2)
显然这一节的教材安排是不合理的…因为在TEM波中:
E z = 0 , H z = 0 E_z=0,H_z=0 Ez=0,Hz=0
显然代入纵横关系式中,全军覆没…所以分析横电磁波的时候不能采用纵向常量法得到直接表达式
这时候我们可以代入得到纵横关系式前面一点的关系式中:
(2.1) k c 2 = 0 或 γ 2 + k 2 = 0 k_c^2=0\quad或\quad\gamma^2+k^2=0\tag{2.1} kc2=0γ2+k2=0(2.1)
(tem) ∇ x y 2 E ⃗ ( x , y ) = 0 ∇ x y 2 H ⃗ ( x , y ) = 0 \nabla^2_{xy}\vec E(x,y)=0 \quad \quad \nabla^2_{xy}\vec H(x,y)=0 \tag{tem} xy2E (x,y)=0xy2H (x,y)=0(tem)
那么我们就可以知道,代入纵横关系式会凉凉的原因是,(tem)他看上去就是一个静态场的方程,用麦克斯韦旋度式便变成0了.

这也启发我们,在求解TEM波动方程的时候,之需要先算出导波的横向分布函数,再乘以纵向传播因子 e − γ z e^{-\gamma z} eγz就可以得到波动方程了.而且并不是每一种波导都会有TEM模.

存在条件

首先说明的一点是:空心波导只能传输TM或TE波,不能传输TEM波,因为在无外源的无限长导体空管中不可能存在静电场
书上P175,结合来看吧…(懒得打字)

TEM传播常数和相速

由(2.1)可知
γ = α + j β = j k = j ω ε μ \gamma=\alpha+j\beta =jk=j\omega \sqrt{\varepsilon \mu} γ=α+jβ=jk=jωεμ
解得
α = 0 , β = ω ε μ \alpha =0 \quad,\quad \beta =\omega\sqrt{\varepsilon \mu} α=0,β=ωεμ
所以相速为:
v = ω β = 1 ε μ v=\frac {\omega}{\beta}=\frac1{\sqrt{\varepsilon \mu}} v=βω=εμ 1
可以看出TEM模导行波是与频率无关的非色散波

TEM的波阻抗

由(标量2)和(标量6)并代入TEM的定义式:
γ E x = j ω μ H y \gamma E_x=j\omega \mu H_y γEx=jωμHy
γ H y = j ω ε E x \gamma H_y=j\omega \varepsilon E_x γHy=jωεEx
代入 γ = j ω ε μ \gamma = j\omega\sqrt{\varepsilon \mu} γ=jωεμ 得(注意,求解不是联立.只要用其中一条代入就行了)
Z T E M = E x H y = μ ε = η Z^{TEM}=\frac{E_x}{H_y}=\sqrt{\frac{\mu}{\varepsilon}}=\eta ZTEM=HyEx=εμ =η
可以看出, Z T E M Z^{TEM} ZTEM和频率是没有关系的.
所以:TEM模在任何频率下都能传播非色散横电磁波

TE nor TM

在TM波中, E z ≠ 0 E_z \neq 0 Ez̸=0 H z = 0 H_z=0 Hz=0.所以只需要代入(波动1),同理:
在TE波中, H z ≠ 0 H_z \neq 0 Hz̸=0 E z = 0 E_z=0 Ez=0.所以只需要代入(波动2)

存在条件

可以看出,无论是哪一种, k c 2 k_c^2 kc2都不会等于0,所以:
γ 2 + k 2 ≠ 0 \gamma^2+k^2 \neq 0 γ2+k2̸=0
被称为波导中TM波和TE波的存在条件。

传播常数和截止频率

由传播因子 e − j γ z e^{-j\gamma z} ejγz可以知道,在 e − γ z → 0 e^{-\gamma z}\to 0 eγz0时,传播截止.这个时候有 γ → 1 \gamma \to 1 γ1
所以有:
γ = k c 2 − ω c 2 ε μ = 0 \gamma=\sqrt{k^2_c-\omega_c^2 \varepsilon \mu}=0 γ=kc2ωc2εμ =0
解得:
f c = k c 2 π ε μ f_c=\frac{k_c}{2\pi\sqrt{\varepsilon\mu}} fc=2πεμ kc
其中, f c f_c fc被称为截止频率或临界频率(c to cut),所以反过来求 γ \gamma γ得:
γ = { j k 1 − ( f c f ) 2 = j β f &gt; f c k c 1 − ( f c f ) 2 = α f &lt; f c \gamma=\begin{cases} jk\sqrt{1-(\frac{f_c}{f})^2}= j\beta \quad f&gt;f_c \\k_c\sqrt{1-(\frac{f_c}{f})^2}=\alpha\quad f&lt;f_c \end{cases} γ=jk1(ffc)2 =jβf>fckc1(ffc)2 =αf<fc
可以看出:
f &lt; f c f&lt;f_c f<fc时,传播因子变成了 e − α z e^{-\alpha z} eαz,是一个衰减型凋落场
f &gt; f c f&gt;f_c f>fc时,传播因子变成了 e − j β z e^{-j\beta z} ejβz,表示一个传播型色散行波

相速和波导波长

f &gt; f c f&gt;f_c f>fc时,因为是一个色散波,我们可以来讨论一下他的相速,由上面:
β = k 1 − ( f c f ) 2 \beta=k\sqrt{1-(\frac{f_c}{f})^2} β=k1(ffc)2
所以有,相速:
v p = ω β = v 1 − ( f c f ) 2 &gt; v v_p=\frac\omega\beta=\frac{v}{\sqrt{1-(\frac{f_c}{f})^2}}&gt;v vp=βω=1(ffc)2 v>v

波导内波导行波的波长称为波导波长:
λ g = 2 π β = 2 π k 1 1 − ( f c f ) 2 = λ 1 − ( f c f ) 2 &gt; λ \lambda_g=\frac{2\pi}{\beta}=\frac{2\pi}{k}\frac1{\sqrt{1-(\frac{f_c}{f})^2}}=\frac\lambda{\sqrt{1-(\frac{f_c}{f})^2}} &gt;\lambda λg=β2π=k2π1(ffc)2 1=1(ffc)2 λ>λ
表明导行波是与频率有关的色散行波

波阻抗
TM波

由纵横关系式,结合tm波的特征可得:
E x = − γ k c 2 ∙ ∂ E z ∂ x E_x=-\frac{\gamma}{k_c^2}\bullet\frac{\partial E_z}{\partial x} Ex=kc2γxEz
E y = − γ k c 2 ∙ ∂ E z ∂ y E_y=-\frac{\gamma}{k_c^2}\bullet\frac{\partial E_z}{\partial y} Ey=kc2γyEz
H x = j ω ε k c 2 ∙ ∂ E z ∂ y H_x=\frac{j\omega\varepsilon}{k_c^2}\bullet\frac{\partial E_z}{\partial y} Hx=kc2jωεyEz
E y = − j ω ε k c 2 ∙ ∂ E z ∂ x E_y=-\frac{j\omega\varepsilon}{k_c^2}\bullet\frac{\partial E_z}{\partial x} Ey=kc2jωεxEz
所以定义TM波的波阻抗为:
Z T M = E x H y = − E y H x = γ j ω ε Z^{TM}=\frac{E_x}{H_y}=\frac{-E_y}{H_x}=\frac{\gamma}{j\omega\varepsilon} ZTM=HyEx=HxEy=jωεγ
消去 γ \gamma γ得:
Z T M = { η 1 − ( f c f ) 2 = R T M , f &gt; f c − j k c ω ε 1 − ( f c f ) 2 = − j X c T M , f &lt; f c Z^{TM}=\begin{cases}\eta\sqrt{1-(\frac{f_c}{f})^2} =R^{TM},\quad \quad\quad\quad f&gt;f_c \\-j\frac{k_c}{\omega\varepsilon}\sqrt{1-(\frac{f_c}{f})^2}=-jX_c^{TM}, \quad f&lt;f_c \end{cases} ZTM=η1(ffc)2 =RTM,f>fcjωεkc1(ffc)2 =jXcTM,f<fc

TE波

按照TM波的套路,代入 E z = 0 E_z=0 Ez=0得:
Z T M = { η 1 1 − ( f c f ) 2 = R T E , f &gt; f c j μ ω k c 1 1 − ( f c f ) 2 = j X c T E , f &lt; f c Z^{TM}=\begin{cases}\eta\frac1{\sqrt{1-(\frac{f_c}{f})^2}} =R^{TE},\quad \quad\quad\quad f&gt;f_c \\j\frac{\mu\omega}{k_c}\frac1{\sqrt{1-(\frac{f_c}{f})^2}}=jX_c^{TE},\quad \quad \quad f&lt;f_c \end{cases} ZTM=η1(ffc)2 1=RTE,f>fcjkcμω1(ffc)2 1=jXcTE,f<fc

互易性

由上面可以得出:
Z T M ∙ Z T E = η 2 = ( Z T E M ) 2 Z^{TM}\bullet Z^{TE}=\eta^2 =(Z^{TEM})^2 ZTMZTE=η2=(ZTEM)2
可以看到TE和TM波的波阻抗具有互易性

矩形波导

这里也是要做纵横关系式求解的最后一步,代入边界条件
由前面就可以知道,矩形波导不能传播TEM波
首先假设矩形波导的数学模型:
assumption
长a宽b壁导体
先上一张图辅助一下大家后面看边界条件的法向还是切向
bodao

TM(图的右边)

边界条件:

( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + k c 2 ) E z ( x , y ) = 0 (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+k_c^2)E_z(x,y)=0 (x22+y22+kc2)Ez(x,y)=0
{ E z ∣ x = 0 = 0 , E z ∣ x = a = 0 E z ∣ y = 0 = 0 , E z ∣ y = b = 0 \begin{cases}E_z|_{x=0}=0,\quad E_z|_{x=a}=0 \\ E_z|_{y=0}=0,\quad E_z|_{y=b}=0\end{cases} {Ezx=0=0,Ezx=a=0Ezy=0=0,Ezy=b=0
其中 k c 2 = γ 2 + k 2 k_c^2=\gamma^2+k^2 kc2=γ2+k2称为截止波数.
公式的意义是很明确的:
传播TM波的时候矩形波导的边界都没有电场强度
以下是我以为的原因(有异议可以评论,大家互相学习一下)

  1. 一个原因(一对边)在于,边界条件中,法向的电场强度连续,而理想导体内部没有电磁场
  2. 另一对边是因为,上一章说过的趋肤效应导致的,而由于是 σ = ∞ \sigma=\infty σ=所以就为0了
纵向解

由于我们想求的纵横关系式中,x和y是独立分开的.所以假设:
E z ( x , y ) = X ( x ) Y ( y ) E_z(x,y)=X(x)Y(y) Ez(x,y)=X(x)Y(y)
代入波动方程并化成常微分方程得:
d 2 X d x 2 + k x 2 X = 0 \frac {d^2 X}{dx^2}+k_x^2 X=0 dx2d2X+kx2X=0
d 2 Y d x 2 + k y 2 Y = 0 \frac {d^2 Y}{dx^2}+k_y^2 Y=0 dx2d2Y+ky2Y=0
其中: k c 2 = k x 2 + k y 2 \quad \quad k_c^2=k_x^2+k^2_y kc2=kx2+ky2
显然特征方程的根是两个纯虚数,故设通解:
X ( x ) = A s i n k x x + B c o s k x x X(x)=Asink_x x +Bcosk_x x X(x)=Asinkxx+Bcoskxx
Y ( y ) = C s i n k y y + D c o s k y y Y(y)=Csink_y y +Dcosk_y y Y(y)=Csinkyy+Dcoskyy

分别代入边界条件可得(书上P176):
E z ( x , y ) = E 0 s i n m π a x s i n n π b y , m , n = 1 , 2 , 3...... E_z(x,y)=E_0 sin\frac{m\pi}{a}x sin \frac{n\pi}{b}y,\quad m,n=1,2,3...... Ez(x,y)=E0sinamπxsinbnπy,m,n=1,2,3......
其中: E 0 = A C \quad\quad \quad E_0=AC E0=AC由激励源强度确定
大概的思路是先带入x=0和y=0那两条,算出B,D=0再代入剩下两条即可.

横向解

现在求出了 E z E_z Ez的表达式,显然,代入一般情况可得:
E x = − γ k c 2 ( m π a ) E 0 c o s m π a x s i n n π b y E_x=-\frac{\gamma}{k_c^2}(\frac{m\pi}{a})E_0 cos\frac{m\pi}{a}xsin\frac{n\pi}{b}y Ex=kc2γ(amπ)E0cosamπxsinbnπy
E y = − γ k c 2 ( n π b ) E 0 s i n m π a x s i n n π b y E_y=-\frac{\gamma}{k_c^2}(\frac{n\pi}{b})E_0 sin\frac{m\pi}{a}xsin\frac{n\pi}{b}y Ey=kc2γ(bnπ)E0sinamπxsinbnπy
H x = j ω ε k c 2 ( n π b ) E 0 s i n m π a x c o s n π b y H_x=\frac{j\omega\varepsilon}{k_c^2}(\frac{n\pi}{b})E_0 sin\frac{m\pi}{a}xcos\frac{n\pi}{b}y Hx=kc2jωε(bnπ)E0sinamπxcosbnπy
H y = j ω ε k c 2 ( m π a ) E 0 s i n n π b x c o s m π a y H_y=\frac{j\omega\varepsilon}{k_c^2}(\frac{m\pi}{a})E_0 sin\frac{n\pi}{b}xcos\frac{m\pi}{a}y Hy=kc2jωε(amπ)E0sinbnπxcosamπy
其中:
k c = γ 2 + k 2 = k x 2 + k y 2 = ( m π a ) 2 + ( n π b ) 2 k_c=\sqrt{\gamma^2+k^2}=\sqrt{k_x^2+k_y^2}=\sqrt{(\frac{m\pi}{a})^2+(\frac{n\pi}{b})^2} kc=γ2+k2 =kx2+ky2 =(amπ)2+(bnπ)2
由TE,TM的存在条件可以知道,当m=n=0时,方程无意义

TE(图的左边)

由于和TM是同一个套路,这里就直接给公式了:

边界条件

( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + k c 2 ) H z ( x , y ) = 0 (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+k_c^2)H_z(x,y)=0 (x22+y22+kc2)Hz(x,y)=0
{ H z ∣ x = 0 = 0 , H z ∣ x = a = 0 H z ∣ y = 0 = 0 , H z ∣ y = b = 0 \begin{cases}H_z|_{x=0}=0,\quad H_z|_{x=a}=0 \\ H_z|_{y=0}=0,\quad H_z|_{y=b}=0\end{cases} {Hzx=0=0,Hzx=a=0Hzy=0=0,Hzy=b=0

纵向解

H z ( x , y ) = H 0 c o s m π a x c o s n π b y , m , n = 1 , 2 , 3...... H_z(x,y)=H_0 cos\frac{m\pi}{a}x cos\frac{n\pi}{b}y,\quad m,n=1,2,3...... Hz(x,y)=H0cosamπxcosbnπy,m,n=1,2,3......

横向解

E x = j ω ε k c 2 ( n π b ) H 0 c o s m π a x s i n n π b y E_x=\frac{j\omega\varepsilon}{k_c^2}(\frac{n\pi}{b})H_0 cos\frac{m\pi}{a}xsin\frac{n\pi}{b}y Ex=kc2jωε(bnπ)H0cosamπxsinbnπy
E y = − j ω ε k c 2 ( m π a ) H 0 s i n m π a x c o s n π b y E_y=-\frac{j\omega\varepsilon}{k_c^2}(\frac{m\pi}{a})H_0 sin\frac{m\pi}{a}xcos\frac{n\pi}{b}y Ey=kc2jωε(amπ)H0sinamπxcosbnπy
H x = γ k c 2 ( m π a ) H 0 c o s n π b y s i n m π b x H_x=\frac{\gamma}{k_c^2}(\frac{m\pi}{a})H_0 cos\frac{n\pi}{b}ysin\frac{m\pi}{b}x Hx=kc2γ(amπ)H0cosbnπysinbmπx
H y = γ k c 2 ( n π b ) H 0 s i n m π a x s i n n π b y H_y=\frac{\gamma}{k_c^2}(\frac{n\pi}{b})H_0 sin\frac{m\pi}{a}xsin\frac{n\pi}{b}y Hy=kc2γ(bnπ)H0sinamπxsinbnπy
同理:m=n=0时,公式无意义

横场分布的物理特性

这里对应的是P178,下面列举出来只作复习回想用:

  1. 沿x,y的驻波性和z向的行波性
  1. 平面波的非均匀性
  2. 场的多模性
  3. 模式的兼并性
  4. 模式的阶次性

导波的纵场传输特性*

截止性(高通特性)

之前在一般传输特性就讲过这个问题,只是k可以由m和n给出,所以回代得:
k c = γ 2 + k 2 = k x 2 + k y 2 = ( m π a ) 2 + ( n π b ) 2 k_c=\sqrt{\gamma^2+k^2}=\sqrt{k_x^2+k_y^2}=\sqrt{(\frac{m\pi}{a})^2+(\frac{n\pi}{b})^2} kc=γ2+k2 =kx2+ky2 =(amπ)2+(bnπ)2
f c − k c 2 π ε μ = 1 2 ε μ ( m a ) 2 + ( n b ) 2 f_c-\frac{k_c}{2\pi \sqrt{\varepsilon\mu}}=\frac1{2\sqrt{\varepsilon\mu}}\sqrt{(\frac ma)^2+(\frac nb)^2} fc2πεμ kc=2εμ 1(am)2+(bn)2
λ c = 2 π k c = 2 ( m a ) 2 + ( n b ) 2 \lambda_c=\frac{2\pi}{k_c}=\frac2{\sqrt{(\frac ma)^2+(\frac nb)^2} } λc=kc2π=(am)2+(bn)2 2

色散性和滤波性

由上一个性质可以知道,在截取频率之前的波形都会因为传播常数的实部不为0而全部被去掉
所以当f> f c f_c fc时( α = 0 \alpha=0 α=0):
β = ω 2 ε μ − ( m π a ) 2 − ( n π b ) 2 \beta=\sqrt{\omega^2\varepsilon\mu-(\frac{m\pi}{a})^2-(\frac{n\pi}{b})^2} β=ω2εμ(amπ)2(bnπ)2
λ g = 2 π β = 2 π ω 2 ε μ − ( m π a ) 2 − ( n π b ) 2 \lambda_g=\frac{2\pi}{\beta}=\frac{2\pi}{\sqrt{\omega^2\varepsilon\mu-(\frac{m\pi}{a})^2-(\frac{n\pi}{b})^2}} λg=β2π=ω2εμ(amπ)2(bnπ)2 2π
v p = ω β = ω ω 2 ε μ − ( m π a ) 2 − ( n π b ) 2 v_p=\frac{\omega}{\beta}=\frac{\omega}{\sqrt{\omega^2\varepsilon\mu-(\frac{m\pi}{a})^2-(\frac{n\pi}{b})^2}} vp=βω=ω2εμ(amπ)2(bnπ)2 ω

阻抗双重性

这个由截止性就知道,低于截止频率的波阻抗呈阻性,高于的呈电抗性:
Z T M = γ j ω ε = { 1 ω ε ω 2 ε μ − ( m π a ) 2 − ( n π b ) 2 = R T M , f &gt; f c − j 1 ω ε ( m π a ) 2 + ( n π b ) 2 − ω 2 ε μ = − j X c T M , f &lt; f c Z^{TM}=\frac{\gamma}{j\omega\varepsilon}=\begin{cases}\frac1{\omega\varepsilon}\sqrt{\omega^2\varepsilon\mu-(\frac {m\pi}{a})^2-(\frac{n\pi}{b})^2}=R^{TM},\quad\quad \quad\quad f&gt;f_c\\ -j\frac1{\omega\varepsilon}\sqrt{(\frac{m\pi}{a})^2+(\frac{n\pi}{b})^2-\omega^2\varepsilon\mu}=-jX_c^{TM},\quad \quad f&lt;f_c\end{cases} ZTM=jωεγ={ωε1ω2εμ(amπ)2(bnπ)2 =RTM,f>fcjωε1(amπ)2+(bnπ)2ω2εμ =jXcTM,f<fc

Z T E = j ω μ γ = { 1 ω μ 1 ω 2 ε μ − ( m π a ) 2 − ( n π b ) 2 = R T M , f &gt; f c j ω μ 1 ( m π a ) 2 + ( n π b ) 2 − ω 2 ε μ = j X c T M , f &lt; f c Z^{TE}=\frac{j\omega\mu}{\gamma}=\begin{cases}\frac1{\omega\mu}\frac1{\sqrt{\omega^2\varepsilon\mu-(\frac {m\pi}{a})^2-(\frac{n\pi}{b})^2}}=R^{TM},\quad\quad \quad\quad\quad\quad\quad f&gt;f_c\\ j\omega\mu\frac1{\sqrt{(\frac{m\pi}{a})^2+(\frac{n\pi}{b})^2-\omega^2\varepsilon\mu}}=jX_c^{TM},\quad \quad\quad\quad\quad\quad\quad f&lt;f_c\end{cases} ZTE=γjωμ=ωμ1ω2εμ(amπ)2(bnπ)2 1=RTM,f>fcjωμ(amπ)2+(bnπ)2ω2εμ 1=jXcTM,f<fc

主模 T E 10 TE_{10} TE10的传输特性

用主模传输的重点问题在于单模传输 单模传输 单模传输 单模传输

场分布

至于为什么 T E 10 TE^{10} TE10是主模的话,就不说了,你只要把 m,n的各个值代进去纵横关系式,就可以知道了
E y = ω μ a π H 0 s i n π a x c o s ( ω t − β z − π 2 ) E_y=\frac{\omega\mu a}{\pi}H_0sin{\frac{\pi}ax}cos(\omega t-\beta z-\frac\pi2) Ey=πωμaH0sinaπxcos(ωtβz2π)
H x = β a π H 0 s i n π a x c o s ( ω t − β z + π 2 ) H_x=\frac{\beta a}{\pi}H_0sin{\frac{\pi}ax}cos(\omega t-\beta z+\frac\pi2) Hx=πβaH0sinaπxcos(ωtβz+2π)
H z = H 0 c o s π a x c o s ( ω t − β z ) H_z=H_0cos\frac\pi a xcos(\omega t-\beta z) Hz=H0cosaπxcos(ωtβz)
…其他三个为0…

传输特性

根据前面说的那些,代入m=1,n=0得:
f c = 1 2 a ε μ f_c=\frac1{2a\sqrt{\varepsilon\mu}} fc=2aεμ 1
λ c = 2 a \lambda_c=2a λc=2a
β = k 1 − ( f c f ) 2 = ω 2 ε μ − ( π a ) 2 \beta=k\sqrt{1-({\frac {f_c}{f}})^2}=\sqrt{\omega^2\varepsilon\mu-(\frac{\pi}{a})^2} β=k1(ffc)2 =ω2εμ(aπ)2
λ g = 2 π β = 2 π k 1 1 − ( f c f ) 2 = 2 π ω 2 ε μ − ( π a ) 2 \lambda_g=\frac{2\pi}{\beta}=\frac{2\pi}{k}\frac1{\sqrt{1-({\frac {f_c}{f}})^2}}=\frac{2\pi}{\sqrt{\omega^2\varepsilon\mu-(\frac{\pi}{a})^2}} λg=β2π=k2π1(ffc)2 1=ω2εμ(aπ)2 2π
v p = ω β = v 1 − ( f c f ) 2 = ω ω 2 ε μ − ( π a ) 2 v_p=\frac{\omega}{\beta}=\frac v{\sqrt{1-({\frac {f_c}{f}})^2}}=\frac{\omega}{\sqrt{\omega^2\varepsilon\mu-(\frac{\pi}{a})^2}} vp=βω=1(ffc)2 v=ω2εμ(aπ)2 ω
Z T E = η 1 1 − ( f c f ) 2 = ω μ 1 ω 2 ε μ − ( π a ) 2 Z^{TE}=\eta\frac1{\sqrt{1-({\frac {f_c}{f}})^2}}=\omega\mu\frac1{\sqrt{\omega^2\varepsilon\mu-(\frac{\pi}{a})^2}} ZTE=η1(ffc)2 1=ωμω2εμ(aπ)2 1
多模

结语

因为这里写了比较多的波动方程,所以会有点长!

如果你想请我吃个南五的话

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小何的芯像石头

谢谢你嘞,建议用用我的链接

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值