Interpreting and Disentangling Feature Components of Various Complexity from DNNs

该论文提出一种方法来定义和量化深度神经网络(DNN)中间层特征的复杂性,不同于基于架构的理论复杂度。通过知识蒸馏启发的解缠网络,分解不同复杂度的特征分量。新提出的指标用于分析这些特征组件的可靠性、有效性和过拟合影响,为网络压缩和知识蒸馏提供深入理解。解缠特征组件有助于提升DNN性能。
摘要由CSDN通过智能技术生成

Paper: https://arxiv.org/abs/2006.15920
Motivation: 将原始特征分解成不同复杂度阶的特征分量。进一步设计分析解缠特征分量的度量。
在这里插入图片描述
方法: 不同复杂度的特征分量的解缠受知识蒸馏的启发。将目标 DNN 视为教师网络。然后,设计几个不同深度的解缠结网络(即解缠结网络)来模仿教师网络中间层的特征。由浅层解缠结网模仿的特征组件通常对应于低复杂性的特征组件。除了低复杂度的组件外,更深的解缠器网络可以逐步学习一个复杂度更高的附加特征组件。此外,我们发现 disentangler 网络中的通道数量不会显著影响不同复杂度阶数的特征分量的分布。这证明了我们方法的可信度。所提出的方法可以广泛应用于针对不同架构的不同任务学习的 DNN。作为通用数学工具,所提出的指标为网络压缩和知识蒸馏的成功提供了深刻的解释。
创新点:

  1. 我们提出了一种方法来定义、量化和分析 DNN 中中间层特征的真实复杂性。与基于其架构的 DNN 理论复杂度不同,本文量化的真实特征复杂度揭示了任务的难度。
  2. 所提出的方法解开不同复杂度阶的特征分量。
  3. 我们提出了新的指标来分析这些特征组件的可靠性、有效性、过拟合的重要性和 DNN 的性能。该分析为理解网络压缩和知识蒸馏提供了一个新的视角。
  4. 解开的特征组件提高了 DNN 的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值