训练过程中的误差,就是训练误差。
在验证集上进行交叉验证选择参数(调参),最终模型在验证集上的误差就是验证误差。
训练完毕、调参完毕的模型,在新的测试集上的误差,就是测试误差。
假如所有的数据来自一个整体,模型在这个整体上的误差,就是泛化误差。通常说来,测试误差的平均值或者说期望就是泛化误差。
综合来说,它们的大小关系为
训练误差 < 验证误差 < 测试误差 ~= 泛化误差
本文深入解析了机器学习中训练误差、验证误差、测试误差及泛化误差的概念与区别。阐述了这些误差在模型训练、调参及评估过程中的作用与重要性。
训练过程中的误差,就是训练误差。
在验证集上进行交叉验证选择参数(调参),最终模型在验证集上的误差就是验证误差。
训练完毕、调参完毕的模型,在新的测试集上的误差,就是测试误差。
假如所有的数据来自一个整体,模型在这个整体上的误差,就是泛化误差。通常说来,测试误差的平均值或者说期望就是泛化误差。
综合来说,它们的大小关系为
训练误差 < 验证误差 < 测试误差 ~= 泛化误差
4983
1275

被折叠的 条评论
为什么被折叠?