高斯分布3——边缘概率与条件概率

一、推导过程:

在这里插入图片描述

二、结果:

  1. 边缘分布
    x1,x2 各自依然服从 μi,写反差矩阵 Σii 的多元高斯分布;

  2. 条件概率分布
    给定 xj 求 xi 的分布:
    μi|j=μi+ΣijΣ−1jj(xj−μj)
    Σi|j=Σjj−ΣTijΣ−1iiΣij

### 高斯混合模型 高斯混合模型 (Gaussian Mixture Model, GMM) 是一种基于概率的聚类算法,用于表示数据点来自多个不同的正态分布。该模型假设观测到的数据是由若干个高斯分量组成,每个分量代表一类潜在类别。 #### 数学表达 设 \( \mathbf{x}=(x_1,x_2,\ldots,x_n)^T \) 表示一组 n 维特征向量,则 K 个成分的 GMM 可以定义为: \[ p(\mathbf{x})=\sum_{k=1}^{K}\pi_k\mathcal{N}(x|\mu_k,\Sigma_k), \] 其中 \( \pi_k \) 称作第 k 类别的混合系数;\( \mathcal{N}(x|\mu_k,\Sigma_k) \) 表示均值为 μ 和协方差矩阵 Σ 的多元高斯密度函数[^1]。 ```python from sklearn.mixture import GaussianMixture gmm = GaussianMixture(n_components=3) gmm.fit(X_train) labels = gmm.predict(X_test) ``` ### 贝叶斯定理 贝叶斯定理由英国数学家托马斯·贝叶斯提出,在统计推断领域占据重要地位。其核心思想是在给定新证据的情况下更新事件发生的可能性大小。公式如下所示: \[ P(A|B)=\frac{P(B|A)\cdot P(A)}{P(B)}, \] 这里 A 和 B 分别指代两个随机变量; P(A) 和 P(B) 分别称为边缘概率或先验概率; P(B|A) 则被称为条件概率或者似然度;而最终得到的结果 P(A|B),即后验概率反映了当已知某些事实之后我们对于未知事物的新认识程度[^2]。 ### 最大后验概率(MAP) 最大后验估计(Maximum a Posteriori Estimation, MAP) 结合了极大似然估计(ML)的思想与贝叶斯理论中的先验信息。它不仅考虑了样本本身所提供的信息,还加入了对参数本身的主观判断——也就是所谓的“先验”。 在实践中,通常会设定一个合理的先验分布形式并调整超参使其更贴近实际情况。相比 ML 方法而言,这种方法能够有效防止过拟合并提高泛化能力。具体实现上就是寻找使得联合概率最大的那组参数θ* : \[ \theta^*=\arg\max_\theta[P(D|\theta)\times P(\theta)] \] 此处 D 表示训练集内所有实例构成的整体输入输出序列集合;后者则是针对待估测对象所指定的一个适当类型的概率质量/密度函数。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值