拼命三娘冲(20191113)_对偶问题

优化问题 R n R^n Rn
m i n f 0 ( x ) f i ( x ) ⩽ 0 , i = 1 , 2 , . . . , m h i ( x ) = 0 , i = 1 , 2 , . . . , p D = ⋂ m d o m f i ⋂ p d o m h i minf_0(x) \\ f_i(x)\leqslant{0},i=1,2,...,m \\ h_i(x)=0,i=1,2,...,p \\ D=\overset{m}{\bigcap}domf_i\overset{p}{\bigcap}domh_i minf0(x)fi(x)0,i=1,2...,mhi(x)=0,i=1,2...,pD=mdomfipdomhi
拉格朗日量 R n + m + p R^{n+m+p} Rn+m+p
L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) L(x,\lambda,v)=f_0(x)+\displaystyle\sum_{i=1}^m\lambda_if_i(x)+\displaystyle\sum_{i=1}^pv_ih_i(x) L(x,λ,v)=f0(x)+i=1mλifi(x)+i=1pvihi(x)
拉格朗日对偶函数 R m + p R^{m+p} Rm+p
g ( λ , , v ) = i n f L ( x , λ , v ) = i n f f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) g(\lambda,,v)=infL(x,\lambda,v)=inff_0(x)+\displaystyle\sum_{i=1}^m\lambda_if_i(x)+\displaystyle\sum_{i=1}^pv_ih_i(x) g(λ,,v)=infL(x,λ,v)=inff0(x)+i=1mλifi(x)+i=1pvihi(x)
对偶问题的重要性质:可以为原问题提供下界。
若限制 λ i ⩾ 0 \lambda_i\geqslant0 λi0, 则 g ( λ , v ) ⩽ p ∗ g(\lambda,v)\leqslant{p^*} g(λ,v)p
证明:
g ( λ , v ) ⩽ f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) = f 0 ( x ) + ∑ i = 1 m + p λ i f i ( x ) ⩽ f 0 ( x ) g(\lambda,v)\leqslant f_0(x)+\displaystyle\sum_{i=1}^m\lambda_if_i(x)+\displaystyle\sum_{i=1}^p\lambda_if_i(x)+\displaystyle\sum_{i=1}^pv_ih_i(x)\\ =f_0(x)+\displaystyle\sum_{i=1}^{m+p}\lambda_if_i(x) \\ \leqslant f_0(x) g(λ,v)f0(x)+i=1mλifi(x)+i=1pλifi(x)+i=1pvihi(x)=f0(x)+i=1m+pλifi(x)f0(x)
对偶问题
m i n f 0 ( x ) s . t . λ i ⩾ 0 minf_0(x) \\ s.t. \lambda_i\geqslant0 minf0(x)s.t.λi0
应用:最小向量范数,最大熵问题

对偶性质
  \medspace 假设 m i n f 0 ∗ ( x ) = p ∗ , m a x g 0 ( λ ∗ , v ∗ ) = d ∗ minf_0^*(x)=p^*, maxg_0(\lambda^*,v^*)=d^* minf0(x)=p,maxg0(λ,v)=d
  \medspace 弱对偶性(总成立): d ∗ ⩽ p ∗ d^*\leqslant p^* dp
  \medspace 强对偶性: d ∗ = p ∗ d^*=p^* d=p
  \medspace   \medspace 几乎所有的凸优化问题都满足强对偶性/若存在一个可行域中的点 x x x,使得 f i ( x ) < 0 f_i(x)\lt 0 fi(x)<0,那么该凸优化满足强对偶性条件。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值