对偶问题的基本性质

写于:2024年1月3日晚

修改于:


原规划与对偶规划

原规划对偶规划
max ⁡ z = C T X  s.t.  { A X ≤ b ,  其中  X ( m ∗ 1 ) X ≥ 0 \begin{aligned} & \max \mathrm{z}=\mathbf{C}^T \mathbf{X} \\ & \text { s.t. }\left\{\begin{array}{l}\mathbf{A X} \leq \mathbf{b}, \quad \text { 其中 } \mathrm{X}_{\left(\mathrm{m}^* 1\right)} \\ \mathbf{X} \geq \mathbf{0}\end{array}\right.\end{aligned} maxz=CTX s.t. {AXb, 其中 X(m1)X0 min ⁡ w = Y b  s.t.  { Y A ≥ C T ,  其中  Y ( 1 ∗ n ) Y ≥ 0 \begin{aligned} & \min w=\mathbf{Y b} \\ & \text { s.t. }\left\{\begin{array}{l}\mathbf{Y A} \geq \mathbf{C}^T, \text { 其中 } \mathrm{Y}_{\left(1^* \mathrm{n}\right)} \\ \mathbf{Y} \geq 0\end{array}\right.\end{aligned} minw=Yb s.t. {YACT, 其中 Y(1n)Y0
max ⁡ z = ∑ j = 1 n c j x j  s.t.  { ∑ j = 1 n a i j x j ≤ b i ( i = 1 , 2 , … , m ) x j ≥ 0 ( j = 1 , 2 , … , n ) \begin{aligned} & \max \mathrm{z}=\sum_{j=1}^n c_j x_j \\ & \text { s.t. }\left\{\begin{array}{l}\sum_{j=1}^n a_{i j} x_j \leq b_i(i=1,2, \ldots, m) \\ x_j \geq 0(j=1,2, \ldots, n)\end{array}\right.\end{aligned} maxz=j=1ncjxj s.t. {j=1naijxjbi(i=1,2,,m)xj0(j=1,2,,n) min ⁡ w = ∑ i = 1 m b i y i  s.t.  { ∑ i = 1 m a i j y i ≥ c j ( j = 1 , 2 , … , n ) y i ≥ 0 ( i = 1 , 2 , … , m ) \begin{aligned} & \min w=\sum_{i=1}^m b_i y_i \\ & \text { s.t. }\left\{\begin{array}{l}\sum_{i=1}^m a_{i j} y_i \geq c_j(j=1,2, \ldots, n) \\ y_i \geq 0(i=1,2, \ldots, m)\end{array}\right.\end{aligned} minw=i=1mbiyi s.t. {i=1maijyicj(j=1,2,,n)yi0(i=1,2,,m)

对称性:对偶问题的对偶问题是原问题。任何一个线性规划问题存在且有唯一的对偶问题。


弱对偶性:若 X ‾ \overline{\mathbf{X}} X 是原问题的可行解, Y ‾ \overline{\mathbf{Y}} Y 是对偶问题的可行解,则存在 C X ‾ ⩽ Y ‾ b \mathbf{C} \overline{\mathbf{X}} \leqslant \overline{\mathbf{Y}} \mathbf{b} CXYb

原问题最优目标函数值是对偶目标函数值的下界,对偶问题最优目标函数值是原问题目标函数值的上界。
在这里插入图片描述

坐标轴理解: 坐标轴自左向右逐渐增大。如果原问题和对偶问题都有可行解 X ‾ 、 Y ‾ \overline{\mathbf{X}} 、 \overline{\mathbf{Y}} XY,那么说明原问题和对偶问题都存在某个可行解对应的函数值,而因为原问题为 max ⁡ \max max 类型,则更优解会在 Z ∗ \mathrm{Z}^* Z 右侧,而对偶问题为 m i n \mathrm{min} min 类型,更优解会在 W ∗ \mathrm{W}^* W 左侧,两者一定会在某一处取得相同的最优目标函数值,因此存在 C X ‾ ⩽ Y ‾ b \mathbf{C} \overline{\mathbf{X}} \leqslant \overline{\mathbf{Y}} \mathbf{b} CXYb

将原问题和对偶问题看做是两个人在角力,目标函数值视为擂台。原问题自左向右冲,对偶问题自右向左冲,如果问题有可行解,那么就在擂台上,如果有无界解,那么就将对方挤出擂台。


无界性

  1. 若原问题/对偶问题有无界解,那么对偶问题/原问题无可行解
    在这里插入图片描述
    如果原问题有无界解,说明原问题最优值随着坐标轴一直向右延伸,对偶问题被挤出擂台,所以对偶问题无可行解。

  2. 若原问题/对偶问题无可行解,那么对偶问题/原问题无可行解或有无界解

  3. 若原问题有可行解,而对偶问题无可行解,那么原问题有无界解

  4. 若对偶问题有可行解,而原问题无可行解,那么对偶问题有无界解

补充:原问题和对偶问题中有一个为无穷多/唯一最优解,无法退出另一个最优解的情况。


最优性:设 X ^ \widehat{\mathbf{X}} X 是原问题的可行解, Y ^ \widehat{\mathbf{Y}} Y 是对偶问题的可行解,当 C X ^ = Y ^ b \mathbf{C} \hat{\mathbf{X}}=\hat{\mathbf{Y}} \mathbf{b} CX^=Y^b 时, X ^ \hat{\mathbf{X}} X^ Y ^ \hat{\mathbf{Y}} Y^ 是最优解。
对偶定理:
表述1:若原问题和对偶问题都有可行解,则都有最优解,而且最优解的目标函数值相等。
表述2:若原问题有最优解,则对偶问题也有最优解,而且目标函数值相等。


互补松驰定理:线性规划问题的最优解中,如果对应某一约束条件的对偶变量值非零,那么该约束条件取严格等式;反之如果约束条件取严格不等式,那么对应的对偶变量一定为零。也即:
{ y i ∗ ( ∑ j = 1 n a i j x j − b i ) = 0 ( i = 1 , 2 , … , m ) x j ∗ ( ∑ i = 1 m a i j y i − c j ) = 0 ( j = 1 , 2 , … , n ) \left\{\begin{array}{l} y_i *\left(\sum_{j=1}^n a_{i j} x_j-b_i\right)=0(i=1,2, \ldots, m) \\ x_j *\left(\sum_{i=1}^m a_{i j} y_i-c_j\right)=0(j=1,2, \ldots, n) \end{array}\right. {yi(j=1naijxjbi)=0(i=1,2,,m)xj(i=1maijyicj)=0(j=1,2,,n)

应用:由原/对偶问题最优解求对偶/原问题最优解

  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值