SIFT算法原理(2)-极值点的精确定位

本文介绍了SIFT算法中极值点的精确定位过程,包括二值化、极值点检测、子像素插值以及低对比度极值点的舍弃。此外,还讲解了如何通过Hessian矩阵去除边缘效应,以确保特征点的稳定性和鲁棒性。
摘要由CSDN通过智能技术生成

SIFT解析(一)建立高斯金字塔中,我们得到了高斯差分金字塔;

 

 

 

检测DOG尺度空间极值点

SIFT关键点是由DOG空间的局部极值点组成的.以中心点进行3X3X3的相邻点比较,检测其是否是图像域和尺度域的相邻点的极大值或极小值.

(1)为了确保不是噪声我们先进型阈值二值化;

n和S一样,你想提取多少个图片的特征;(n)S表示每组提取多少层

 

(2)在差分金字塔中找极值点

 

 

 

 

 

 特征点是由DOG空间的局部极值点组成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值