支持向量机SVM总结

支持向量机(SVM)是一种有监督的机器学习算法,用于分类和预测。它通过构造“超平面”来区分不同类别的样本点,尤其在非线性可分的情况下,借助核函数在高维空间实现线性可分。SVM的优势在于其鲁棒性、泛化能力和避免过拟合,但缺点包括计算资源消耗大、对样本缺失敏感以及对核函数选择的敏感性。
摘要由CSDN通过智能技术生成

1 什么是SVM?

在这里插入图片描述
SVM是Support Vector Machine的简称,它的中文名为支持向量机,属于一种有监督的机器学习算法,可用于离散因变量的分类和连续因变量的预测。通常情况下,该算法相对于其他单一的分类算法(如Logistic回归、决策树、朴素贝叶斯、KNN等)会有更好的预测准确率,主要是因为它可以将低维线性不可分的空间转换为高维的线性可分空间。
该算法的思想就是利用某些支持向量所构成的“超平面”,将不同类别的样本点进行划分。不管样本点是线性可分的、近似线性可分的还是非线性可分的,都可以利用“超平面”将样本点以较高的准确度切割开来。需要注意的是,如果样本点为非线性可分,就要借助于核函数技术,实现样本在核空间下完成线性可分的操作。关键是“超平面”该如何构造。

2 优缺点

运用SVM模型对因变量进行分类或预测时具有几个显著的优点:例如,由于SVM模型最终所形成的分类器仅依赖于一些支持向量,这就导致模型具有很好的鲁棒性(增加或删除非支持向量的样本点,并不会改变分类器的效果)以及避免维度灾难”的发生(模型并不会随数据维度的提升而提高计算的复杂度);模型具有很好的泛化能力,一定程度上可以避免模型的过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值