京东金融的城市计算能力在商业、市政、能源等方面的落地成果案例

案例一:联通营业厅智能选址

联通在线下有很多营业厅,但是随着线下业务向线上转移,其线下营业厅资源没有得到充分利用。联通如果想把用户重新拉回营业厅,首先,他要考虑在哪里选址,或者是改造哪些营业厅,第二是如何配置里面的3C产品,使得转化率最高。如果只是基于联通本身的数据是做不到的,他们需要联合京东电商、物流、金融的数据,共同做智能化的选址。

目前,京东金融在上海给300多家联通运营商选址、改造,这里面既要考虑到联通用户的数据,也考虑到京东的数据,还要考虑第三方的地理信息数据,把它变成一个学习的数据,并通过人工智能算法,带来高效的回报率。

案例二:违章停车监测

城市里有很多违章停车现象,很多非车道被占,但是执法管理人员是有限的,我们不可能在每一条路上都安排执法人员去管理违章停车。现在,由于共享单车的出现,我们可以用共享单车的GPS数据来动态的智能的检测城市里面的违章停车情况。

比如有车违章停在路边,人们骑自行车的时候就不得不绕到机动车道里面去,他的骑行轨迹就会发生变化。现在我们跟摩拜合作,基于摩拜大量的数据,能够实时检测整个城市里面什么地方出现了违章停车,不需要派管理员去看就能够自动识别,然后把有限的人力精准地投放到那些违章的路段,快速地去捕获违章停车,这大大提升了政府的效率,可以在一定程度上去帮助政府治理违章停车的现象。

案例三:区域人流预测

通过大数据和算法,我们能够预测整个城市里面每个区块的人流量情况。比如踩踏事件,如果能够提前几小时知道这个区域里面未来有多少人进,有多少人出,我们就可以提前管控做分流,做管控,保证人身安全。以前的算法很难实现这种非规则区域的人流量预测,大家知道如果做深度学习的话,只能做规则网格的计算机运算,而京东金融在做的,是在非规则区域里面做人流量预测。另外,我们还能够做到不同区域之间,人流量之间的转移,在源头上进行分流,而不是说到了目的地之后再去管控和分流。这样既能保证公共安全,也能帮助我们做很多的智能的调度和管控。

案例四:救护车智能调度和选址

救护车智能调度和选址是利用大量的120呼叫数据和救护车路线抢救数据,在不增加任何投入的情况下面,只要对救护车站的位置做稍微的偏移跟挪动,就能够把抢救时间缩短30%。比如,以前我们救一百个人需要花一百个小时,现在我们只要花70个小时,留下30个小时可以在手术台上挽救更多人的生命。另外,通过智能算法我们可以对救护车做动态的调度,在不增加任何救护车的情况下,把运力再提高30%。前提是我们没有增加任何的资源投入,这就是人工智能的威力。

案例五:水质的预测

水质的预测涉及很多因素,包括管道本身的年龄和寿命、周边的情况、气象、人们用水的模式等因素,是一个很复杂的过程。基于人工智能算法,京东金融部署了管网水质预测系统来实时预测未来的管网水质,从而指导自来水工厂更科学地进行投氯消毒,保证居民饮用水质,还能及时发现水管健康状态,第一时间进行维护、修理,保证城市高效运转,进而给政府各项城市建设决策提供参考。

案例六:AI+火力发电

在中国,火力发电占据60%发电量,产生的能源消耗和污染排放很严重。京东金融城市计算通过大数据和人工智能,能够用更少的煤发更多的电,并且产生更少的污染排放。该算法非常复杂,比阿尔法狗还要难,因为发电机组的状态是连续空间,变量非常多,而且它不是完全封闭的空间,如何通过人工智能算法动态的去做各种阀门调控、送水、送风,这是一个世界性的难题。如果京东金融的算法能在全国两千多台发电机组推广,可以提高0.5%的发电效率,一年给国家节约一百亿元。

案例七:信用城市体系建设

京东金融正在跟新华社合作,在福州打造信用城市试点,构建中国的信用城市标准体系。它包括了居民、企业和政府三个主体的信用。居民信用即个人的出行,租用,借贷等行为产生的信用。企业的信用则与股市评价、招投标、融资等动作相关。政府信用关系到政府的考核,涉及经济、环境、能耗等多方面指标。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值