今天就是打家劫舍的一天,这个系列不算难,大家可以一口气拿下。
198.打家劫舍
class Solution {
public int rob(int[] nums) {
if(nums.length==1) return nums[0];
//dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
int[] dp=new int[nums.length];
dp[0]=nums[0];
dp[1]=Math.max(nums[0],nums[1]);
//因为间隔不能偷所以从2开始,由1,0推出2
for(int i=2;i<nums.length;i++){
//偷i还是不偷i:如果不偷i则查看i-1的值(最大偷窃金额)
// 如果偷则查看dp[i-2]的值再加上当前。
dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[dp.length-1];
}
}
213.打家劫舍II
环形问题转化成线性问题
class Solution {
public int rob(int[] nums) {
if(nums.length==1) return nums[0];
if(nums.length==2) return Math.max(nums[0],nums[1]);
//分两种情况 :考虑头节点不考虑尾节点,不考虑头节点考虑尾节点
//取这两种情况最大值
int res=0;
res=Math.max(stealAction(0,nums.length-1,nums),stealAction(1,nums.length,nums));
return res;
}
int stealAction(int start,int end,int[] nums){//不包括end
int[] dp=new int[end-start];///注意!!!!
dp[0]=nums[start];
dp[1]=Math.max(nums[start],nums[start+1]);
for(int i=2;i<end-start;i++){
if(start==0) dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]);
if(start==1) dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i+1]);
}
return dp[nums.length-2];
}
}
第二种方法:因为是环形 所以可以设置xyz
class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int len = nums.length;
if (len == 1)
return nums[0];
return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));
}
int robAction(int[] nums, int start, int end) {
int x = 0, y = 0, z = 0;
for (int i = start; i < end; i++) {
z = Math.max(y, x + nums[i]);
x = y;
y = z;
}
return z;
}
}
337.打家劫舍III
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rob(TreeNode root) {
int[] res = robAction1(root);
return Math.max(res[0], res[1]);
}
int[] robAction1(TreeNode root) {
//dp数组两个状态偷与不偷当前节点的 money最大值
int dp[] = new int[2];
if (root == null)
return dp;
int[] left = robAction1(root.left);
int[] right = robAction1(root.right);
//不偷当前节点,取左右子树的偷与不偷的最大值
dp[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
//偷当前节点 则取左右子树不偷的值+当前节点的值
dp[1] = root.val + left[0] + right[0];
return dp;
}
}