# coding: utf-8
import sys
import os
import numpy as np
sys.path.append(os.pardir)
from dataset.mnist import load_mnist
from PIL import Image
def img_show(img):
pil_img = Image.fromarray(np.uint8(img))
pil_img.show()
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)
print(x_train.shape) # (60000, 784)
print(t_train.shape)
print(x_test.shape)
print(t_test.shape)
img = x_train[0]
label = t_train[0]
print(t_train)
print(label)
print(img.shape)
img = img.reshape(28, 28) # 把图像的形状变成原来的尺寸
print(img.shape)
img_show(img)
# 手写数字识别
# 假设训练和学习的过程全部结束,我们使用学习到的参数,先实现神经网络的推理处理,这个推理处理可以称之为神经网络的前向传播(forward propagation)
# 和求解机器学习问题的步骤(训练和推理)一样,使用神经网络解决问题也需要首先使用训练数据(学习数据)进行权重参数的学习,
# 在进行推理过程,使用刚才学到的参数对输入数据进行分类
# MNIST 手写数字图像集,机器学习领域最有名的数据集之一,由0-9的数字图像构成
MNIST 手写数字图像集 python实现图像识别
最新推荐文章于 2023-04-15 10:04:00 发布