MNIST 手写数字图像集 python实现图像识别

# coding: utf-8
import sys
import os

import numpy as np

sys.path.append(os.pardir)

from dataset.mnist import load_mnist

from PIL import Image


def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()


(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)
print(x_train.shape)  # (60000, 784)
print(t_train.shape)
print(x_test.shape)
print(t_test.shape)

img = x_train[0]
label = t_train[0]
print(t_train)
print(label)

print(img.shape)
img = img.reshape(28, 28)  # 把图像的形状变成原来的尺寸
print(img.shape)

img_show(img)

#  手写数字识别
#  假设训练和学习的过程全部结束,我们使用学习到的参数,先实现神经网络的推理处理,这个推理处理可以称之为神经网络的前向传播(forward propagation)
#  和求解机器学习问题的步骤(训练和推理)一样,使用神经网络解决问题也需要首先使用训练数据(学习数据)进行权重参数的学习,
#       在进行推理过程,使用刚才学到的参数对输入数据进行分类

#  MNIST 手写数字图像集,机器学习领域最有名的数据集之一,由0-9的数字图像构成








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

P("Struggler") ?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值