Pytorch迁移学习

在本教程中,您将学习如何使用迁移学习来训练您的网络。
您可以在cs231n便笺上读到更多关于迁移学习的内容,引用这些注释。
实际上,很少有人从零开始(随机初始化)训练整个卷积网络,因为拥有足够大的数据集相对较少。
相反,通常在一个非常大的数据集中对ConvNet进行预处理(例如,ImageNet,它包含120万张图像,包含1000个类别),
然后使用ConvNet作为初始化或固定的特征提取器来完成感兴趣的任务。这两种主要的转移学习场景如下:
细化ConvNet:我们使用一个预先训练的网络初始化网络,比如在ImageNet 1000
数据集上接受培训的网络。其余的培训看起来像平时一样。固定特征提取器:在这里,
我们将冻结除最终完全连接层外的所有网络的权重。最后一个完全连接的层被替换为
一个新的具有随机权重的层,并且只训练这个层。
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

if __name__ == '__main__':
    plt.ion()   # interactive mode
    #加载数据我们将使用torchvision和torch.utils.data包来加载数据。我们今天要解决的问题是
    # 训练一个模型来对蚂蚁和蜜蜂进行分类。我们有大约120个蚂蚁和蜜蜂的训练图像。
    # 每个类有75个验证图像。通常,这是一个非常小的数据集,如果从抓痕中训练的话。
    # 因为我们使用的是传输。学习,我们应该能够合理地概括。这个数据集是ImageNet的一个很小的子集。

    # 数据增强和培训规范化
    # 只是验证的规范化
    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    data_dir = 'hymenoptera_data'
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                              data_transforms[x])
                      for x in ['train', 'val']}
    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                                 shuffle=True, num_workers=4)
                  for x in ['train', 'val']}
    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
    class_names = image_datasets['train'].classes

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    #可视化一些图像,让我们可视化一些培训图像,以便理解数据增强。
    def imshow(inp, title=None):
        """Imshow for Tensor."""
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = std * inp + mean
        inp = np.clip(inp, 0, 1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)  # 暂停一下,以便更新情节。


    # 获取一批培训数据
    inputs, classes = next(iter(dataloaders['train']))

    # 从批处理中生成网格
    out = torchvision.utils.make_grid(inputs)

    imshow(out, title=[class_names[x] for x in classes])
    plt.waitforbuttonpress(0)
    #现在训练模型,让我们编写一个通用的函数来训练模型。在这里,我们将说明:
    # 调度学习率保存了下面的最佳模型,参数调度器是torch.Optim.lr_调度器中的LR调度器对象。
    def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
        since = time.time()

        best_model_wts = copy.deepcopy(model.state_dict())
        best_acc = 0.0

        for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))
            print('-' * 10)

            # 每个时代都有一个培训和验证阶段。
            for phase in ['train', 'val']:
                if phase == 'train':
                    scheduler.step()
                    model.train()  # 将模型设置为训练模式
                else:
                    model.eval()  # 设定评估模式

                running_loss = 0.0
                running_corrects = 0

                # 迭代数据。
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)

                    # 参数梯度为零
                    optimizer.zero_grad()

                    # forward
                    # 如果只在火车上跟踪历史
                    with torch.set_grad_enabled(phase == 'train'):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
                        loss = criterion(outputs, labels)

                        # 只有在训练阶段才能向后优化
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()

                    # 统计
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)

                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_acc = running_corrects.double() / dataset_sizes[phase]

                print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                    phase, epoch_loss, epoch_acc))

                # deep copy the model
                if phase == 'val' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())

            print()

        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('Best val Acc: {:4f}'.format(best_acc))

        # load best model weights
        model.load_state_dict(best_model_wts)
        return model
    # 可视化模型预测泛型函数以显示一些图像的预测
    def visualize_model(model, num_images=6):
        was_training = model.training
        model.eval()
        images_so_far = 0
        fig = plt.figure()

        with torch.no_grad():
            for i, (inputs, labels) in enumerate(dataloaders['val']):
                inputs = inputs.to(device)
                labels = labels.to(device)

                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)

                for j in range(inputs.size()[0]):
                    images_so_far += 1
                    ax = plt.subplot(num_images // 2, 2, images_so_far)
                    ax.axis('off')
                    ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                    imshow(inputs.cpu().data[j])

                    if images_so_far == num_images:
                        model.train(mode=was_training)
                        return
            model.train(mode=was_training)
    #FinetuningConvNet加载一个预先训练的模型并重置最终完全连接的层。
    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 2)

    model_ft = model_ft.to(device)

    criterion = nn.CrossEntropyLoss()

    # 注意到所有参数都在优化。
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

    # 每7个周期衰减0.1倍
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    #在GPU上训练和评估它应该需要15-25分钟,但是它只需要不到一分钟
    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                           num_epochs=25)
    visualize_model(model_ft)
    #ConvNet作为固定的特征提取器,我们需要冻结除最后一层之外的所有网络。
    # 我们需要设置Required_grad=false来冻结参数,这样梯度就不会用反向()计算。
    # 您可以在这里的文档中读到更多关于这一点的内容。
    model_conv = torchvision.models.resnet18(pretrained=True)
    for param in model_conv.parameters():
        param.requires_grad = False

    # Parameters of newly constructed modules have requires_grad=True by default
    num_ftrs = model_conv.fc.in_features
    model_conv.fc = nn.Linear(num_ftrs, 2)

    model_conv = model_conv.to(device)

    criterion = nn.CrossEntropyLoss()

    # Observe that only parameters of final layer are being optimized as
    # opoosed to before.
    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
    #在CPU上进行训练和评估将花费大约一半的时间,这是因为对于大多数网络来说,不需要计算渐变。然而,前进确实需要计算。
    model_conv = train_model(model_conv, criterion, optimizer_conv,
                             exp_lr_scheduler, num_epochs=25)
    visualize_model(model_conv)

    plt.ioff()
    plt.show()
    plt.waitforbuttonpress(0)

 

PyTorch迁移学习是指利用已经在大规模数据集上训练好的神经网络模型的特征权重,将其应用于新的任务或数据集上。通过迁移学习,我们可以利用预训练模型的学习到的特征来加速和改善我们自己的模型训练过程。 在PyTorch,可以通过以下步骤进行迁移学习: 1. 加载预训练模型:首先,我们需要加载一个在大规模数据集上预训练好的模型,例如在ImageNet上预训练的模型。PyTorch提供了许多预训练模型,可以通过`torchvision.models`模块来获取。 2. 冻结模型参数:为了保持预训练模型的特征权重不变,我们需要冻结模型的参数,即不对它们进行梯度更新。可以通过设置`requires_grad=False`来实现。 3. 修改模型结构:根据新任务的需求,我们可能需要修改预训练模型的结构。例如,可以替换或添加全连接层来适应新的分类任务。 4. 训练模型:根据新的任务和数据集,我们可以使用迁移学习后的模型进行训练。通常情况下,只需要训练少量的新添加的层或全连接层,而不需要从头开始训练整个模型。 以下是一个示例代码,演示了如何在PyTorch进行迁移学习: ```python import torch import torch.nn as nn import torchvision.models as models # 加载预训练模型 pretrained_model = models.resnet18(pretrained=True) # 冻结模型参数 for param in pretrained_model.parameters(): param.requires_grad = False # 修改模型结构 num_classes = 10 pretrained_model.fc = nn.Linear(pretrained_model.fc.in_features, num_classes) # 训练模型 # ... ``` 在上述代码,我们加载了一个在ImageNet上预训练的ResNet-18模型,并冻结了所有参数。然后,我们将模型的最后一层全连接层替换为适应新的分类任务。最后,我们可以使用新的模型进行训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值