《机器学习西瓜书》学习笔记——第四章_决策树

1. 基本概念

决策树是一类常见的机器学习算法,是一种简单但是广泛使用的分类器。顾名思义,决策树基于树结构进行决策。一般的,一颗决策树包含一个根结点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到每个叶结点的路径对应一个判定测试序列。
决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树。

  • 决策数有两大优点:
    1)决策树模型可以读性好,具有描述性,有助于人工分析;
    2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。

2. 划分选择

决策树学习的关键是如何选择最优划分属性,一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能的属于同一类别,即结点的"纯度"越来越高。这里介绍三个划分准则:

2.1 信息增益

“信息熵”是度量样本集合纯度最常用的一种指标。假定当前样本集合 D D D中第 k k k类样本所占的比例为 p k ( k = 1 , 2 , 3 , . . . ∣ Y ∣ ) p_k(k=1,2,3,...|\mathcal{Y}|) pk(k=1,2,3,...Y),z则 D D D的信息熵定义为

E n t ( D ) = − ∑ k = 1 ∣ Y ∣ p k l o g 2 p k Ent(D)=-\sum_{k=1}^{|\mathcal{Y}|} p_k log_2^{p_k} Ent(D)=k=1Ypklog2pk

约定:若 p = 0 p=0 p=0,则 p l o g 2 p = 0 plog_2^p=0 plog2p=0

E n t ( D ) Ent(D) Ent(D)的值越小,则 D D D的纯度越高。

假定离散属性 a a a有V个可能的取值 { a 1 , a 2 , . . . a V } \{a^1,a^2,...a^V\} {a1,a2,...aV},若使用a来对样本集 D D D进行划分,则会产生 V V V个分支结点,其中第 v v v个分支结点包含了 D D D中所有在属性 a a a上取值为 a v a^v av的样本,记为 D v D^v Dv.根据上式计算出 D v D^v Dv的信息熵,考虑到不同的分支结点所包含的样本数不同,给分支结点赋予权重 ∣ D v ∣ / ∣ D ∣ |D^v|/|D| Dv/D,即样本数越多的分支结点的影响越大,于是可计算出用属性 a a a对样本集进行划分所获得的“信息增益”。

G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a)=Ent(D)-{\sum_{v=1}^V{|D^v|\over|D|} Ent(D^v)} Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)

一般而言,信息增益越大,意味着使用属性 a a a来进行划分所获得的“纯度提升”越大,因此,可用信息增益来进行决策树的划分属性选择,即选用 a ∗ = arg ⁡ a_*=\arg a=arg maxGain(D,a), ID3决策树学习算法就是用此准则来选择划分属性。

2.2 增益率

信息增益准则对可取数值数目较多的属性有所偏好,为减少这种偏好带来的不利影响,著名的C4.5决策树算法不直接使用信息熵,而是使用“增益率”来选择最优划分属性。增益率定义为:
G a i n _ r a t i o ( D , a ) Gain\_ratio(D,a) Gain_ratio(D,a)= G a i n ( D , a ) I V ( a ) Gain(D,a)\over IV(a) IV(a)Gain(D,a)
其中
I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ l o g 2 ∣ D v ∣ ∣ D ∣ IV(a)= - {\sum_{v=1}^V{|D^v|\over|D|} log_2 ^{|D^v|\over|D|}} IV(a)=v=1VDDvlog2DDv
称为属性 a a a的固有值,属性 a a a的可能取值数目越大(V越大), I V ( a ) IV(a) IV(a)的值通常会越大。

增益率准则对可取数值数目较少的属性有所偏好,所以,C4.5算法并不是直接选择增益率最大额划分属性,而是使用启发式:先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。

2.3 基尼指数

CART决策树使用“基尼指数”来选择划分属性,数据集 D D D的纯度可用基尼指指来度量:
G i n i ( D ) = ∑ k = 1 ∣ Y ∣ ∑ k ′ ≠ k p k p k ′ Gini(D)=\sum_{k=1}^{|\mathcal{Y}|}\sum_{k'\neq k} p_kp_{k'} Gini(D)=k=1Yk̸=kpkpk =1- ∑ k = 1 ∣ Y ∣ p k 2 \sum_{k=1}^{|\mathcal{Y}|}p_k^2 k=1Ypk2
直观上, G i n i ( D ) Gini(D) Gini(D)反应了从数据集 D D D中随机抽取两个样本,其类别标记不一致的概率,因此 G i n i ( D ) Gini(D) Gini(D)越小,数据集 D D D的纯度越高。

属性 a a a的基尼指数定义为

Gini_index ( D , a ) (D,a) (D,a)= ∑ v = 1 V ∣ D v ∣ ∣ D ∣ G i n i ( D v ) \sum_{v=1}^V {|D^v|\over|D|}Gini(D^v) v=1VDDvGini(Dv)

于是,我们在候选属性集合A中,选择使得划分后基尼指数最小的属性作为最优划分属性,即 a ∗ = arg ⁡ a_*=\arg a=arg min G i n i _ i n d e x ( D , a ) Gini\_index(D,a) Gini_index(D,a).

3. 剪枝处理

剪枝是决策树学习算法针对“过拟合”的主要手段。决策树学习中,为了尽可能正确的分类样本,结点划分过程将不断重复,有时会造成决策树分支过多,这时需要“剪枝”来降低过拟合的风险。剪枝方法和程度对决策树泛化性能影响显著。
决策树剪枝的基本策略有“预剪枝”和“后剪枝”
预剪枝是指在决策过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能的提升,则停止划分并将当前结点标记为叶节点;
后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来泛化性能提升,则将该子树替换为叶结点。

预剪枝

后剪枝

4.连续与缺失值

连续值处理

采用连续属性离散化技术
简单策略,二分法(C4.5采用的机制)

缺失值处理

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值