机器学习之多变量线性回归

(一)机器学习之多变量线性回归

(1) 常用符号

以房价模型为例(这里随意给出的数据):

房屋面积 ( m 2 ) (m^2) (m2)卧室数量房屋层数房屋年龄(年)价格(万元)
3906420400
10008355888
600103101286
200413286

n n n:表示特征的数量
x ( i ) {x^{\left( i \right)}} x(i):表示第 i i i 个训练实例(训练样本),是特征矩阵中的第 i i i行,是一个向量(vector)。例如: x ( 2 ) = [ 1000 8 3 5 ] {x}^{(2)}\text{=}\begin{bmatrix} 1000\\ 8\\ 3\\ 5 \end{bmatrix} x(2)=1000835

x j ( i ) {x}_{j}^{\left( i \right)} xj(i):表示特征矩阵中第 i i i 行的第 j j j 个特征,也就是第 i i i 个训练实例(训练样本)的第 j j j 个特征。例如: x 2 ( 2 ) = 8 , x 3 ( 2 ) = 3 x_{2}^{\left( 2 \right)}=8,x_{3}^{\left( 2 \right)}=3 x2(2)=8,x3(2)=3

支持多变量的函数 h h h 表示为: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θ0+θ1x1+θ2x2+...+θnxn
这个公式中有 n + 1 n+1 n+1个参数和 n n n个变量,为了使得公式能够简化一些,引入 x 0 = 1 x_{0}=1 x0=1,则公式转化为: h θ ( x ) = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta} \left( x \right)={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn
此时模型中的参数是一个 n + 1 n+1 n+1维的向量,任何一个训练实例(训练样本)也都是 n + 1 n+1 n+1维的向量,特征矩阵 X X X的维度是 m ∗ ( n + 1 ) m*(n+1) m(n+1)。 因此公式可以简化为: h θ ( x ) = θ T X h_{\theta} \left( x \right)={\theta^{T}}X hθ(x)=θTX,其中上标 T T T代表矩阵转置。
注意:这里的 h θ ( x ) = θ T X h_{\theta} \left( x \right)={\theta^{T}}X hθ(x)=θTX表示的是全部训练样本的输出值,因为特征矩阵X表示的是所有的训练样本
注意:下面图片中的 h θ ( x ) = θ T X h_{\theta} \left( x \right)={\theta^{T}}X hθ(x)=θTX表示的是其中一个训练样本的输出值,因为下面的特征向量X表示的是其中一个的训练样本
在这里插入图片描述

(2) 多变量线性回归的梯度下降算法

多变量线性回归的代价函数: J ( θ 0 , θ 1 . . . θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} J(θ0,θ1...θn)=2m1i=1m(hθ(x(i))y(i))2

其中: h θ ( x ) = θ T X = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)=\theta^{T}X={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0+θ1x1+θ2x2+...+θnxn
(也可以写成 h θ ( x ) = θ T X = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)=\theta^{T}X={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn,其中 x 0 = 1 {x_{0}}=1 x0=1

为了找出使得代价函数最小的一系列参数,我们运用(批量)梯度下降算法:
Repeat{
         θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 , . . . , θ n ) {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}J\left(\theta_{0}, \theta_{1},...,\theta_{n}\right) θj:=θjαθjJ(θ0,θ1,...,θn)
}
即:
Repeat{
         θ j : = θ j − α ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} θj:=θjαθj2m1i=1m(hθ(x(i))y(i))2
}
求导数后得到:
Repeat{
         θ j : = θ j − α 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) ) {{\theta _j}}:={{\theta _j}}- \alpha\frac{1}{m}\sum\limits_{i=1}^{m}{(({{h_\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{j}^{(i)}) θj:=θjαm1i=1m((hθ(x(i))y(i))xj(i))
(记得同步更新 θ j {\theta _j} θj, for j = 0,1,…,n)
}

n > = 1 n>=1 n>=1时, θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) {{\theta _0}}:={{\theta _0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h_\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{0}^{(i)} θ0:=θ0am1i=1m(hθ(x(i))y(i))x0(i)

                           θ 1 : = θ 1 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 1 ( i ) {{\theta _1}}:={{\theta _1}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h_\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{1}^{(i)} θ1:=θ1am1i=1m(hθ(x(i))y(i))x1(i)

                           θ 2 : = θ 2 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 2 ( i ) {{\theta _2}}:={{\theta _2}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h_\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{2}^{(i)} θ2:=θ2am1i=1m(hθ(x(i))y(i))x2(i)

     我们一开始随机选择一系列的参数值,计算所有的预测结果后,再根据梯度下降算法给所有的参数一个新的值,如此循环直到收敛。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值