无Opencv环境下运行exe

用opencv和C++写了一些程序,但是移植到无opencv环境下就无法使用,最近写了一些图像处理的东西,然后需要.net人员调用我写的东西,他们电脑没有opencv环境配置,因此,就需要把所有opencv动态库和exe文件夹一起拷过去,供他们使用,也就是在无opencv环境下运行exe的问题。

一丶主函数代码(接受输入参数的)

main.cpp

int main(int argc, char* argv[])//
{

    cout << argc << "   " << argv[1] << endl;
    //定义起始时间
    int64 begintime = getTickCount();
    RecongnizeAnswer obj;//类对象
    cout << typeid(*(argv[1])).name() << endl;
    string s(argv[1]);
    string s1(argv[3]);
    cout << s << endl;
    obj.single_old_run(s, s1);//输入两个string类型参数

    //定义结束时间
    int64 endtime = getTickCount();
    cout << "总计耗时:" << (endtime - begintime) / getTickFrequency() << "s" << endl;

    waitKey();
    return 0;
}

关于int main(int argc,char * argv[]){}

argc 即为argument count,即为参数的个数
argv就是实际传入的参数数组
argv[0] 为exe的名称 后面为传入的参数

(一)生成exe
程序编写完之后点击生成解决方案就会生成exe文件

这里写图片描述

(二)利用cmd运行
把exe程序拖入cmd中
这里写图片描述
第一个参数就是我们输入的程序名:
C:\Users\Dev-17Work>D:\SuWenbo\Project\Recongnize\x64\Release\Recongnize.exe
第二个参数是我输入的图片绝对路径:
D:/SuWenbo/Project/Recongnize/Recongnize/2.jpg
第三个参数随便输入了一个字符串:
dhjb
第四个参数输入了一个文件夹,文件输出位置:
D:/SuWenbo/Project/Recongnize/Recongnize/result/

注:输入多少个参数都没关系,都保存在argv[]中,下面输出的数字4就是我们输入的参数个数,在上面的main.cpp中我利用的是第二个和第四个参数,及argv[1]和argv[3]

二丶把opencv动态库和exe程序放到一起

一般动态库在/opencv/build/bin目录下
这里写图片描述

把这些所有文件和生成的exe放在一个文件夹,然后一直到一个无OpenCV环境下,就可以直接调用exe文件了。搞定!

三丶运行exe结果

第二个参数是读取图片。

这里写图片描述

我写的程序是关于答题卡识别的,调用exe输入参数,然后main函数接收参数,运行程序,输出程序结果 ,如上图所示,搞定啦,转移到其他电脑也可用。

这里写图片描述
第四个参数传入的是txt文件输出位置,可以看到该文件夹下有输出文件。

opencv-4.4.0-vc14_vc15.exe 版本:4.4.0 2020年7月 OpenCV 4.x的夏季更新已发布 :晴天: 此版本的亮点: SIFT(尺度不变特征变换)算法已移至主存储库(SIFT的专利已过期) DNN模块: 改进的图层/激活/支持更多模型: 最新的Yolo v4检测器:#17148。为[yolo]层(Yolo v3和Yolo v4)禁用了每层NMS,因为它们是不正确的-用于cv::dnn::NMSBoxes所有检测。 ONNX:添加对Resnet_backbone(Torchvision)的支持#16887 EfficientDet模型支持:#17384 新样本/演示: 添加文本识别示例:C ++ / Python FlowNet2光流:#16575 英特尔®推理引擎后端(OpenVINO™): 增加了对OpenVINO 2020.3 LTS / 2020.4版本的支持 计划在下一版本中删除对NN Builder API的支持 CUDA后端中的许多修复和优化(感谢@YashasSamaga):PR G-API模块: 在OpenCV后端引入了用于状态内核的新API :GAPI_OCV_KERNEL_ST。有状态内核在各个图执行(标准中更多)或流的视频帧之间(以流模式)保留其状态。 在G-API推出更多面向视频的操作:goodFeaturesToTrack,buildOpticalFlowPyramid,calcOpicalFlowPyrLK。 添加了更多的图像处理内核:Laplacian和双边过滤器。 修复了G-API的OpenCL后端中的潜在崩溃。 OpenCV社区的许多其他伟大贡献,包括但不限于: Obj-C / Swift绑定:#17165 (opencv_contrib)Julia绑定是正在进行的GSoC项目的一部分:#2547 (opencv_contrib)BIMEF:生物启发的多重曝光融合框架,用于弱光图像增强: #2448 为CV_16UC1图像启用Otsu阈值:#16640 为文本检测添加笔划宽度变换算法:#2464 计划在Apache 2许可证上进行下一版本OE-32的 迁移#17491
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值