python获取Pandas列名的几种方法

本文汇总了几种获得CSV Excel 文件字段列表的的方法,一起来看看吧

下面几种方法的代码基于这样的测试数据:

import pandas as pd

file = r'E:\数据分析\pandas_02\data.csv'
df = pd.read_csv(file,engine='python')
df

 

1.通过columns字段获取,返回一个numpy型的array

fields = df.columns.values
print(fields)
['品牌' '价格' '好评数']

2.直接使用 list 关键字,返回一个list

fields = list(df)
print(fields)
['品牌', '价格', '好评数']

3.通过 tolist(), 或者 list(array) 转换为list

fields = df.columns.tolist()
print(fields)
['品牌', '价格', '好评数']

4.链表推倒式

fields = [column for column in df]
print(fields)
['品牌', '价格', '好评数']

总之,条条大路通罗马,总有一款适合您。

Python中,使用pandas库时,如果找不到指定的列名几种可能的原因和解决办法。 1. 输入错误:首先检查是否正确输入了列名列名应该与数据集中的列名完全匹配,包括大小写。可以使用`df.columns`属性查看数据集中的所有列名,确保没有输入错误。 2. 列名不存在:如果不存在指定的列名,可能是因为该列名实际上不在数据集中。可以使用`df.columns`属性查看所有列名,确保列名存在。此外,还可以使用`df.info()`查看数据集的信息,包括所有列名和每列的非空值数目。 3. 列名包含空格或特殊字符:如果指定的列名包含空格或特殊字符(如符号或中文字符),在使用列名时需要额外注意。一种解决办法是使用方括号`[]`来选择列,例如`df['列名']`。另一种解决办法是重命名列名,将其修改为不包含特殊字符的格式,例如使用下划线替换空格。 4. 数据类型不匹配:如果指定的列名存在,但是在使用时仍然出现问题,可能是因为列的数据类型与预期不符。例如,指定列的数据类型为整数,但是实际上是字符串。可以使用`df.dtypes`属性查看每列的数据类型,并确保与预期一致。 5. 数据集为空:如果数据集是空的,即没有任何行或列,那么任何列名都将无法找到。可以使用`df.empty`来检查数据集是否为空。在这种情况下,需要确认数据集是否正确加载,或者重新加载数据集。 总之,在处理pandas中找不到指定列名时,应该先确认输入是否正确,然后检查列名是否存在,是否包含特殊字符,数据类型是否匹配,以及数据集是否为空。通过逐步排查和调试,可以找到并解决找不到指定列名的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值