python计算ROC曲线和面积AUC

本文详细解析了ROC曲线的概念,包括真正率(TPR)和假正率(FPR)的计算,以及如何使用sklearn库绘制ROC曲线并计算AUC(曲线下面积)。通过实例演示了不同阈值下TPR和FPR的变化,帮助读者深入理解二分类模型的性能评估。
摘要由CSDN通过智能技术生成

ROC曲线是根据一系列不同的二分类方式(分界值或决定阈),以真正率(也就是灵敏度)(True Positive Rate,TPR)为纵坐标,假正率(1-特效性)(False Positive Rate,FPR)为横坐标绘制的曲线。通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,从而可以绘制ROC曲线。

纵坐标:真正率(True Positive Rate , TPR)或灵敏度(sensitivity)

TPR = TP /(TP + FN) (正样本预测结果数 / 正样本实际数)

横坐标:假正率(False Positive Rate , FPR)

FPR = FP /(FP + TN) (被预测为正的负样本结果数 /负样本实际数)

利用sklearn.metrics.roc_curve可以计算ROC曲线

from sklearn.metrics import roc_curve, auc

y_true = [0, 1, 1]
y_score = [0.1, 0.8, 0.7]

fpr, tpr, thresholds = roc_curve(y_true, y_score)
print(fpr, tpr, thresholds)
"""
[0. 0. 0. 1.] 
[0.  0.5 1.  1. ] 
[1.8 0.8 0.7 0.1]
"""

其中y_tru

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值