Tensorboard之Summary常用函数说明

最近在研究tensorflow自带的例程speech_command,顺便学习tensorflow的一些基本用法。
其中tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝。
而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示。
tf.summary有诸多函数:


1、tf.summary.scalar
用来显示标量信息,其格式为:

tf.summary.scalar(tags, values, collections=None, name=None)

例如:
tf.summary.scalar('mean', mean) # 一般在画loss,accuary时会用到这个函数。

2、tf.summary.histogram
用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None) 

#例如: 
tf.summary.histogram('histogram', var) # 一般用来显示训练过程中变量的分布情况

3、tf.summary.distribution
分布图,一般用于显示weights分布


4、tf.summary.text
可以将文本类型的数据转换为tensor写入summary中:
例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))

5、tf.summary.image
输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。
格式:

tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non

6、tf.summary.audio
展示训练过程中记录的音频 


7、tf.summary.merge_all
merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。
格式:

tf.summaries.merge_all(key='summaries')

8、tf.summary.FileWriter
指定一个文件用来保存图。
格式:tf.summary.FileWritter(path,sess.graph)可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中Tensorflow Summary 
用法示例:

tf.summary.scalar('accuracy',acc)    #生成准确率标量图  
merge_summary = tf.summary.merge_all()  
train_writer = tf.summary.FileWriter(dir,sess.graph)   
#定义一个写入summary的目标文件,dir为写入文件地址  ......(交叉熵、优化器等定义)  
for step in xrange(training_step):    #训练循环      
    train_summary = sess.run(merge_summary,feed_dict =  {...})  
#调用sess.run运行图,生成一步的训练过程数据      
train_writer.add_summary(train_summary,step)  
#调用train_writer的add_summary方法将训练过程以及训练步数保存 

此时开启tensorborad:
tensorboard --logdir=/summary_dir 
便能看见accuracy曲线了。
另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:

9、tf.summary.merge
格式:tf.summary.merge(inputs, collections=None, name=None)
一般选择要保存的信息还需要用到tf.get_collection()函数
示例:

tf.summary.scalar('accuracy',acc)  # 生成准确率标量图  
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])  

train_writer = tf.summary.FileWriter(dir,sess.graph)
# 定义一个写入summary的目标文件,dir为写入文件地址  ......(交叉熵、优化器等定义)  

for step in xrange(training_step):  # 训练循环      
    train_summary = sess.run(merge_summary,feed_dict =  {...})
    # 调用sess.run运行图,生成一步的训练过程数据

    train_writer.add_summary(train_summary,step)
    # 调用train_writer的add_summary方法将训练过程以及训练步数保存  
    # 使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的
    # tf.GraphKeys.SUMMARIES 是summary在collection中的标志。


# 当然,也可以直接:
acc_summary = tf.summary.scalar('accuracy',acc)   # 生成准确率标量图  

merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)])  
# 这里的[]不可省 如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值