LightOJ - 1246

2 篇文章 0 订阅

题解:第二类斯特林数

我们可以把一个大矩形分成两个小矩形,就想国际象棋的棋盘一样,黑色的在一起白色在一起,这样的话我们在同一个矩形里的任意两个格子之间的曼哈顿距离一定是偶数,所以就变成了,我们从k个颜色里面选i个颜色放第一个矩形里面,从k-i个颜色里面选j个颜色放第二个矩形里面,这样就变成了第二类斯特林数,把n个两两不同的颜色放入k个无差别的非空子集里面(有差别的话乘以一个 1 / k ! 1/k! 1/k!)最后就是答案了。

#include <bits/stdc++.h>
using namespace std;
#define int long long
int n,m,k;
const int N=205;
const int mod=1e9+7;
int c[N][N],st[N][N];
int q_pow(int a,int b)
{
    int res=1;
    while(b){
        if(b&1) res=res*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return res;
}
int work(int n,int m)
{
    int tmp,ans=0;
    for(int k=0;k<=m;k++)
    {
        if(k&1) tmp=-1;
        else tmp=1;
        ans=(ans+tmp*c[m][k]%mod*q_pow(m-k,n)%mod+mod)%mod;
    }
    return (ans+mod)%mod;
}
void init(){
    c[0][0]=1;
    for(int i=1;i<N;i++){
        c[i][0]=1;
        for(int j=1;j<=i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
    }
    for(int i=1;i<N;i++){
        for(int j=1;j<=min(i,50LL);j++){
            st[i][j]=work(i,j);
        }
    }
}
int cas=1;
int solve(){
    int ans;
    n++;m++;
    int tmp=(n*m+1)/2;
    int cnt=n*m-tmp;
    if(!tmp||!cnt) ans=k;
    else if(k==1) ans=0;
    else {
        ans=0;
        for(int i=1;i<k;i++){
            for(int j=1;j+i<=k;j++){
                ans=(ans+c[k][i]*c[k-i][j]%mod*st[tmp][j]%mod*st[cnt][i]%mod)%mod;
            }
        }
    }
    printf("Case %d: %lld\n",cas++,ans);
}
signed main()
{
    init();
//    cout<<c[3][2]<<endl;
    int t,cas=1; scanf("%d",&t);
    while(t--){
        scanf("%d%d%d",&n,&m,&k);
        solve();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值