题解:第二类斯特林数
我们可以把一个大矩形分成两个小矩形,就想国际象棋的棋盘一样,黑色的在一起白色在一起,这样的话我们在同一个矩形里的任意两个格子之间的曼哈顿距离一定是偶数,所以就变成了,我们从k个颜色里面选i个颜色放第一个矩形里面,从k-i个颜色里面选j个颜色放第二个矩形里面,这样就变成了第二类斯特林数,把n个两两不同的颜色放入k个无差别的非空子集里面(有差别的话乘以一个 1 / k ! 1/k! 1/k!)最后就是答案了。
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n,m,k;
const int N=205;
const int mod=1e9+7;
int c[N][N],st[N][N];
int q_pow(int a,int b)
{
int res=1;
while(b){
if(b&1) res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
}
int work(int n,int m)
{
int tmp,ans=0;
for(int k=0;k<=m;k++)
{
if(k&1) tmp=-1;
else tmp=1;
ans=(ans+tmp*c[m][k]%mod*q_pow(m-k,n)%mod+mod)%mod;
}
return (ans+mod)%mod;
}
void init(){
c[0][0]=1;
for(int i=1;i<N;i++){
c[i][0]=1;
for(int j=1;j<=i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
for(int i=1;i<N;i++){
for(int j=1;j<=min(i,50LL);j++){
st[i][j]=work(i,j);
}
}
}
int cas=1;
int solve(){
int ans;
n++;m++;
int tmp=(n*m+1)/2;
int cnt=n*m-tmp;
if(!tmp||!cnt) ans=k;
else if(k==1) ans=0;
else {
ans=0;
for(int i=1;i<k;i++){
for(int j=1;j+i<=k;j++){
ans=(ans+c[k][i]*c[k-i][j]%mod*st[tmp][j]%mod*st[cnt][i]%mod)%mod;
}
}
}
printf("Case %d: %lld\n",cas++,ans);
}
signed main()
{
init();
// cout<<c[3][2]<<endl;
int t,cas=1; scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&k);
solve();
}
}