机器学习笔记 第2课:适用于所有算法的原则

机器学习中的监督学习算法,常常用于预测建模。这些算法有一个共通的原则。

人们一般这样来描述机器学习算法:学习一个目标函数(f),能够最好地将输入变量(X)映射到输出变量(Y)。

Y = f(X)

这是一个常见的学习任务。我们期望在给定新的输入变量(X)时,对(Y)做出预测。 我们并不知道函数(f)长什么样,或是什么形式。 倘若我们知道,大可直接使用,也就不需要使用机器学习算法从数据中进行学习。

只有在学习之后,我们才得到了这个函数(f)

最常见的机器学习类型是预测建模(或预测分析),即通过学习映射Y = f(X),根据新的X来预测Y的值.。我们的目标是实现最准确的预测。

在下一课中,你将发现参数算法和非参数算法之间的区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IAMITPRO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值