Catalan numbers upper bound


The Catalan numbers give a direct count of the number of distinct binary trees with ( n ) nodes. The ( n )-th Catalan number, denoted as ( C_n ), is given by the formula:

C n = 1 n + 1 ( 2 n n ) = ( 2 n ) ! ( n + 1 ) ! n ! C_n = \frac{1}{n+1}\binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} Cn=n+11(n2n)=(n+1)!n!(2n)!

This sequence starts with ( C 0 = 1 ) , ( C 1 = 1 ) , ( C 2 = 2 ) , ( C 3 = 5 ) ( C_0 = 1 ), ( C_1 = 1 ), ( C_2 = 2 ), ( C_3 = 5 ) (C0=1),(C1=1),(C2=2),(C3=5), and so on.

To provide a bound on the number of binary trees with ( n ) nodes using the Catalan numbers, you can use the explicit formula above. However, for large ( n ), it’s often useful to have an upper bound that is easier to calculate. One such bound is derived from the central binomial coefficient and uses the fact that ( 4^n ) is an upper bound for ( C_n ):

C n = 1 n + 1 ( 2 n n ) < 4 n n + 1 C_n = \frac{1}{n+1}\binom{2n}{n} < \frac{4^n}{n+1} Cn=n+11(n2n)<n+14n

So, for large ( n ), you can say that the number of binary trees with ( n ) nodes is less than ( 4 n n + 1 ) ( \frac{4^n}{n+1} ) (n+14n), and since ( 4 n n + 1 < 4 n ) ( \frac{4^n}{n+1} < 4^n ) (n+14n<4n) for all ( n ≥ 1 ) ( n \geq 1 ) (n1), it’s common to use ( 4 n ) ( 4^n ) (4n) as a simpler upper bound.

This bound is not tight, particularly for large ( n ), but it’s very useful when you need a quick estimate that is easy to compute, especially when working with inequalities and probabilistic bounds in combinatorial contexts, such as analyzing the size of structures within the ORAM framework as in your original question.


  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值