一文读懂深度学习算法中的优化算法发展史

本文详细介绍了深度学习优化算法的发展历程,从基础的梯度下降法,包括GD和SGD,到引入动量的概念,如动量梯度法和Nesterov Momentum,最后讲解了Adam算法,它综合了动量法的优点并考虑了学习率的自适应调整,以求在训练过程中找到更好的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优化算法的目的

重要概念

梯度:损失函数对于权重函数的导数
梯度下降根据梯度来更新权重,使损失变小的方法

所有优化算法的目的

据梯度更新权重,找到使得损失变得最小的方法。

优化算法的挑战

(1)局部最小值
(2)鞍点

各种优化算法

所有梯度算法都是基于梯度下降法进行演进的。
主要分为三大阶段,第一阶段是梯度下降法,这个阶段的优化算法可以找到局部最优解,但是无法找到全局最优解,很容易陷入鞍点。
第二阶段为动量梯度法,这个阶段的优化算法考虑了权重的优化方向,借鉴了动量的原理,可以在某种程度上跳出局部最优解,但是很容易在优化的过程中,超过最优解。
第三阶段为Adam优化算法,这个阶段的算法综合了动量梯度算法的优点,同时考虑了随着迭代的轮次增加,学习率也会针对不同的权重进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值