深度学习优化算法发展史
优化算法的目的
重要概念
梯度:损失函数对于权重函数的导数
梯度下降:根据梯度来更新权重,使损失变小的方法
所有优化算法的目的
据梯度更新权重,找到使得损失变得最小的方法。
优化算法的挑战
(1)局部最小值
(2)鞍点
各种优化算法
所有梯度算法都是基于梯度下降法进行演进的。
主要分为三大阶段,第一阶段是梯度下降法,这个阶段的优化算法可以找到局部最优解,但是无法找到全局最优解,很容易陷入鞍点。
第二阶段为动量梯度法,这个阶段的优化算法考虑了权重的优化方向,借鉴了动量的原理,可以在某种程度上跳出局部最优解,但是很容易在优化的过程中,超过最优解。
第三阶段为Adam优化算法,这个阶段的算法综合了动量梯度算法的优点,同时考虑了随着迭代的轮次增加,学习率也会针对不同的权重进