功能:将tensor的内存变为连续的。
有些tensor并不是占用一整块内存,而是由不同的数据块组成,而tensor的view()操作依赖于内存是整块的,这时只需要执行contiguous()这个函数,把tensor变成在内存中连续分布的形式。
注:在pytorch的最新版本0.4版本中,增加了torch.reshape(), 这与 numpy.reshape 的功能类似。它大致相当于 tensor.contiguous().view()。
示例代码:
predict = predict.contiguous().view(predict.shape[0], -1)
target &

contiguous()函数用于确保Tensor的内存布局是连续的,这对于某些操作如view()是必要的。在PyTorch 0.4版后,reshape()函数引入,其效果等同于先调用contiguous()再进行view()操作。
最低0.47元/天 解锁文章
8万+

被折叠的 条评论
为什么被折叠?



