pytorch学习笔记一:pytorch学习的路线图

本文是PyTorch学习的第一部分,介绍了如何利用GPU加速计算,展示了对比实验,证实了GPU的高效性。同时,讲解了自动求导的基础,通过示例代码说明了这一核心特性在神经网络中的应用。还提到了PyTorch提供的神经网络工具箱,这些工具简化了模型构建和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. gpu加速,tensor 和autograd(向量和自动求导)
2. 神经网络工具箱

  1. gpu加速

示例代码:

import torch
import time

print(torch.__version__)
print(torch.cuda.is_available())

a =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值