pytorch中nn.sequential()函数的理解

本文介绍了PyTorch中nn.Sequential()函数的用法,它能用于构建固定或动态结构的神经网络。详细阐述了其在构建网络模型中的灵活性。
摘要由CSDN通过智能技术生成
  1. 既可以形成固定结构的神经网络,也可以形成动态结构的神经网络。
    参考链接:
    https://blog.csdn.net/dss_dssssd/article/details/82980222
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值