SVM

支持向量即用一个超平面去分类,需要样本是线性可分的。求解的超平面应是距离各类样本的距离最大,

超平面的公式:
在这里插入图片描述
公式图片截取自西瓜书

任意点到超平面的距离:
在这里插入图片描述

在这里插入图片描述
对于距离超平面最近的点有:(上式的等号成立)
在这里插入图片描述
结合上式获得目标函数:最大化间距和实现分类
在这里插入图片描述
在这里插入图片描述
为了求解上式,进行化简,使用拉格朗日乘子法得到对偶问题,
在这里插入图片描述
偏导代入后得:
在这里插入图片描述
在这里插入图片描述
上式需满足KKT条件才能满足分类条件(距离大于1)&只取最近的点(对应3式)
在这里插入图片描述
对于α的求解使用二次规划算法:
在这里插入图片描述
一直化简到二次规划有闭式解。
此处求出α后再代入上式求出W

截距b由支持向量到超平面距离为1的关系式求出。
在这里插入图片描述

现实生活中有很多样本集不是线性可分的,但是将样本集升维后就能分开了。
在这里插入图片描述
在这里插入图片描述
由于映射升维后的求内积的计算困难,于是引入核函数可以在原始空间计算,其结果等于升维后的内积。可以说核函数隐式的定义了一个特征空间。
在这里插入图片描述
核函数是对于数据集D,能使核矩阵半正定的对称函数。形如下图:
在这里插入图片描述
升维后的特征空间好坏决定了分类效果的好坏,对支持向量机的性能至关重要。因而核函数的选择成为了支持向量机的最大变数。若核函数选择不合适会导致映射的特征空间不合适,分类效果也会不佳。
在这里插入图片描述
现实中要实现完全划分开是困难的且有过拟合风险,因而需要给一个“软间隔”允许部分误差出现。

在这里插入图片描述
在这里插入图片描述

加入正则化系数使求解时样本距离的影响变小。

损失函数的选择:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
引入松弛变量后件均大于1变为大于1-ξ,超过一点点的变量也能被成功分类。

结合上式加入拉格朗日算子后得:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上面的第3式表名只选用支持向量用于求解,远处的点不使用。
α<C时μ>0 -->ξ=0 样本恰好在最大间隔边界
若α=C时μ=0 若此时ξ<=1 则样本点落在最大间隔内,若ξ>1则样本被错误分类。

在这里插入图片描述
总结支持向量机的一般形式,第一项决定了用来划分的超平面,第二项决定了训练集上的误差。
第一项称为“结构风险”描述模型的性质,第二项为“经验风险”描述模型与训练集的契合度。C用来对二者进行折中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值