前言
约束优化或约束规划(Constraint programming, CP)是指从一组非常大的候选集合中找出可行的解决方案,在这些候选集合中,问题可以用任意约束来建模,许多科学和工程学科中都存在CP问题。
CP是基于可行性(寻找一个可行的解决方案)而不是最优化(寻找一个最优的解决方案),它关注的是约束和变量而不是目标函数。实际上,CP问题甚至可能没有目标函数——目标可能只是通过向问题添加约束,将各种可能的解决方案缩小到更易于管理的子集。
问题
假设有3个变量x、y、z,三个数的取值都是{0,1,2},唯一的约束的x不等于y。
求解
值得注意的是,为了提高计算速度,ortools中的CP-SAT求解器只能处理整数,即所有约束的系数都应该为整数,否则乘以一个数使之变为整数。
from ortools.sat.python import cp_model
# 模型
model = cp_model.CpModel()
# 变量
num_val = 3
x = model.NewIntVar(0, 2, 'x')
y = model.NewIntVar(0, 2, 'y')
z = model.NewIntVar(0, 2, 'z')
# 约束
model.Add(x != y)
# 求解
solver = cp_model.CpSolver()
status = solver.Solve(model)
# 结果
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print('x=', solver.Value(x))
print('y=', solver.Value(y))
print('z=', solver.Value(z))
结果
获取所有可行解
值得注意的是,callback类中必须定义on_slution_callback(self)函数
from ortools.sat.python import cp_model
# 模型
model = cp_model.CpModel()
# 变量
num_val = 3
x = model.NewIntVar(0, 2, 'x')
y = model.NewIntVar(0, 2, 'y')
z = model.NewIntVar(0, 2, 'z')
# 约束
model.Add(x != y)
model.Add(x != z)
model.Add(y != z)
# callback类
class AllResult(cp_model.CpSolverSolutionCallback):
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.variables = variables
# 必须要写的callback函数
def on_solution_callback(self):
for v in self.variables:
print(self.Value(v), end='\t')
print('\n')
# 求解
solver = cp_model.CpSolver()
all_result = AllResult([x, y, z])
status = solver.SearchForAllSolutions(model, all_result)
# 结果
if status == cp_model.OPTIMAL:
print('all feasible solution found')
约束规划求解带目标函数的问题
约束规划同样支持带目标函数的问题,但是目标函数系数和约束系数都必须保持为整数。
from ortools.sat.python import cp_model
# 模型
model = cp_model.CpModel()
# 变量
var_upper_bound = max(50, 45, 37)
x = model.NewIntVar(0, var_upper_bound, 'x')
y = model.NewIntVar(0, var_upper_bound, 'y')
z = model.NewIntVar(0, var_upper_bound, 'z')
# 约束
model.Add(2 * x + 7 * y + 3 * z <= 50)
model.Add(3 * x - 5 * y + 7 * z <= 45)
model.Add(5 * x + 2 * y - 6 * z <= 37)
# 目标函数
model.Maximize(2 * x + 2 * y + 3 * z)
# 求解
solver = cp_model.CpSolver()
status = solver.Solve(model)
# 结果
if status == cp_model.OPTIMAL:
print('x=', solver.Value(x))
print('y=', solver.Value(y))
print('z=', solver.Value(z))
print('objective=', solver.ObjectiveValue())