NumPy 基本操作(np.where函数)

                                                                np.where函数

np.where函数:

    np.where 函数是三元表达式 x if condition else y 的矢量化版本。

    help(np.where):        

Help on built-in function where in module numpy:

where(...)
    where(condition, [x, y])
    
    Return elements chosen from `x` or `y` depending on `condition`.
    
    .. note::
        When only `condition` is provided, this function is a shorthand for
        ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
        preferred, as it behaves correctly for subclasses. The rest of this
        documentation covers only the case where all three arguments are
        provided.
    
    Parameters
    ----------
    condition : array_like, bool
        Where True, yield `x`, otherwise yield `y`.
    x, y : array_like
        Values from which to choose. `x`, `y` and `condition` need to be
        broadcastable to some shape.
    
    Returns
    -------
    out : ndarray
        An array with elements from `x` where `condition` is True, and elements
        from `y` elsewhere.
    
    See Also
    --------
    choose
    nonzero : The function that is called when x and y are omitted
    
    Notes
    -----
    If all the arrays are 1-D, `where` is equivalent to::
    
        [xv if c else yv
         for c, xv, yv in zip(condition, x, y)]
    
    Examples
    --------
    >>> a = np.arange(10)
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.where(a < 5, a, 10*a)
    array([ 0,  1,  2,  3,  4, 50, 60, 70, 80, 90])
    
    This can be used on multidimensional arrays too:
    
    >>> np.where([[True, False], [True, True]],
    ...          [[1, 2], [3, 4]],
    ...          [[9, 8], [7, 6]])
    array([[1, 8],
           [3, 4]])
    
    The shapes of x, y, and the condition are broadcast together:
    
    >>> x, y = np.ogrid[:3, :4]
    >>> np.where(x < y, x, 10 + y)  # both x and 10+y are broadcast
    array([[10,  0,  0,  0],
           [10, 11,  1,  1],
           [10, 11, 12,  2]])
    
    >>> a = np.array([[0, 1, 2],
    ...               [0, 2, 4],
    ...               [0, 3, 6]])
    >>> np.where(a < 4, a, -1)  # -1 is broadcast
    array([[ 0,  1,  2],
           [ 0,  2, -1],
           [ 0,  3, -1]])

    实例:

        

    练习:将数组中的所有异常数字替换为0,比如将 NaN 替换为 0

        

发布了79 篇原创文章 · 获赞 9 · 访问量 9887
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览