0_1_2背包问题动态规划方法求解python代码

0_1_2背包问题动态规划方法求解python代码

0_1背包递推公式

在这里插入图片描述
0_1_2背包问题则为,可对一件物品放1个或者2个,0为不放。设计算法时比0_1背包问题多加一个限制条件

def ZeroOneTwoBag(n, W, V, C):
    C = int(C)  # 容量C
    n = int(n)  # 物品个数
    w = W.split(',')
    w = [int(i) for i in w]  # 物品重量数组
    v = V.split(',')
    v = [int(i) for i in v]  # 物品价值数组
    bagTable = [[0 for j in range(C + 1)] for i in range(n + 1)]
    for key_n in range(1,len(bagTable)):
        for key_c in range(1,len(bagTable[key_n])):
            #当前商品重量大于当前背包重量
            if w[key_n-1] > key_c:
                bagTable[key_n][key_c] = bagTable[key_n-1][key_c]
            #如果当前背包容量小于两倍物品重量大于一倍物品重量
            elif w[key_n-1] <= key_c < 2*w[key_n-1]:
                # 如果放背包里,等于只放key_n-1个物品时,并且背包容量为key_c-W[key_n]时的价值加上当前的物品价值
                value1 = bagTable[key_n - 1][key_c - w[key_n - 1]] + v[key_n - 1]
                # 如果不放在背包里
                value2 = bagTable[key_n - 1][key_c]
                bagTable[key_n][key_c] = max(value1, value2)
            else:
                # 如果放背包里,等于只放key_n-1个物品时,并且背包容量为key_c-W[key_n]时的价值加上当前的物品价值
                value1 = bagTable[key_n - 1][key_c - w[key_n - 1]] + v[key_n - 1]
                # 如果不放在背包里
                value2 = bagTable[key_n - 1][key_c]
                #如果放两个在背包里
                value3 = bagTable[key_n - 1][key_c - 2*w[key_n - 1]] + 2*v[key_n - 1]
                bagTable[key_n][key_c] = max(value1, value2,value3)

    for i in range(len(bagTable)):
        print(bagTable[i])
    return bagTable


if __name__ == '__main__':
    inputlist = str(input()).split('-')
    n = inputlist[0]
    W = inputlist[1]
    V = inputlist[2]
    C = inputlist[3]
    ZeroOneTwoBag(n, W, V, C)
好的,下面是用动态规划算法求解0/1背包问题Python完整代码: ```python def knapsack(weights, values, capacity): n = len(weights) dp = [[0] * (capacity + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, capacity + 1): if weights[i - 1] > j: dp[i][j] = dp[i - 1][j] else: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]) return dp[n][capacity] # 测试 weights = [2, 3, 4, 5] values = [3, 4, 5, 6] capacity = 8 print(knapsack(weights, values, capacity)) # 输出:11 ``` 其中,`weights`和`values`分别是物品的重量和价值的列表,`capacity`是背包的容量。`n`是物品的数量,`dp`是一个`(n+1)×(capacity+1)`的二维列表,`dp[i][j]`表示在前`i`个物品中选择不超过重量为`j`的物品可以得到的最大价值。 我们用两个嵌套的循环来遍历所有的物品容量。当物品的重量超过当前容量时,我们无法选择这个物品,因此最大价值就是前`i-1`个物品的最大价值,即`dp[i-1][j]`。当物品的重量不超过当前容量时,我们可以选择这个物品,也可以不选择这个物品。如果不选择这个物品,最大价值就是前`i-1`个物品的最大价值,即`dp[i-1][j]`。如果选择这个物品,最大价值就是前`i-1`个物品中不超过重量为`j-weights[i-1]`的物品可以得到的最大价值,加上当前物品的价值,即`dp[i-1][j-weights[i-1]]+values[i-1]`。因此,我们在这两种情况中选择价值更大的方案,更新`dp[i][j]`的值。 最后,返回`dp[n][capacity]`即可得到在不超过背包容量的情况下可以得到的最大价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

migrant-worker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值