mark一下,感谢作者分享!
https://zhuanlan.zhihu.com/p/32781218
50行代码实现人脸检测
现在的人脸识别技术已经得到了非常广泛的应用,支付领域、身份验证、美颜相机里都有它的应用。用iPhone的同学们应该对下面的功能比较熟悉
iPhone的照片中有一个“人物”的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术。
这篇文章主要介绍怎样用Python实现人脸检测。人脸检测是人脸识别的基础。人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁。
好了,介绍就到这里。接下来,开始准备我们的环境。
准备工作
本文的人脸检测基于dlib,dlib依赖Boost和cmake,所以首先需要安装这些包,以Ubuntu为例:
$ sudo apt-get install build-essential cmake
$ sudo apt-get install libgtk-3-dev
$ sudo apt-get install libboost-all-dev
我们的程序中还用到numpy,opencv,所以也需要安装这些库:
$ pip install numpy
$ pip install scipy
$ pip install opencv-python
$ pip install dlib
人脸检测基于事先训练好的模型数据,从这里可以下到模型数据
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
下载到本地路径后解压,记下解压后的文件路径,程序中会用到。
dlib的人脸特征点
上面下载的模型数据是用来估计人脸上68个特征点(x, y)的坐标位置,这68个坐标点的位置如下图所示:
我们的程序将包含两个步骤:
第一步,在照片中检测人脸的区域
第二部,在检测到的人脸区域中,进一步检测器官(眼睛、鼻子、嘴巴、下巴、眉毛)
人脸检测代码
我们先来定义几个工具函数:
def rect_to_bb(rect):
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
return (x, y, w, h)
这个函数里的rect是dlib脸部区域检测的输出。这里将rect转换成一个序列,序列的内容是矩形区域的边界信息。
def shape_to_np(shape, dtype="int"):
coords = np.zeros((68, 2), dtype=dtype)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
<span class="k">return</span> <span class="n">coords</span>
这个函数里的shape是dlib脸部特征检测的输出,一个shape里包含了前面说到的脸部特征的68个点。这个函数将shape转换成Numpy array,为方便后续处理。
def resize(image, width=1200):
r = width * 1.0 / image.shape[1]
dim = (width, int(image.shape[0] * r))
resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
return resized
这个函数里的image就是我们要检测的图片。在人脸检测程序的最后,我们会显示检测的结果图片来验证,这里做resize是为了避免图片过大,超出屏幕范围。
接下来,开始我们的主程序部分
import sys
import numpy as np
import dlib
import cv2
if len(sys.argv) < 2:
print "Usage: %s <image file>" % sys.argv[0]
sys.exit(1)
image_file = sys.argv[1]
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
我们从sys.argv[1]参数中读取要检测人脸的图片,接下来初始化人脸区域检测的detector和人脸特征检测的predictor。shape_predictor中的参数就是我们之前解压后的文件的路径。
image = cv2.imread(image_file)
image = resize(image, width=1200)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
在检测特征区域前,我们先要检测人脸区域。这段代码调用opencv加载图片,resize到合适的大小,转成灰度图,最后用detector检测脸部区域。因为一张照片可能包含多张脸,所以这里得到的是一个包含多张脸的信息的数组rects。
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = shape_to_np(shape)
<span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">)</span> <span class="o">=</span> <span class="n">rect_to_bb</span><span class="p">(</span><span class="n">rect</span><span class="p">)</span>
<span class="n">cv2</span><span class="o">.</span><span class="n">rectangle</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">w</span><span class="p">,</span> <span class="n">y</span> <span class="o">+</span> <span class="n">h</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">cv2</span><span class="o">.</span><span class="n">putText</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="s2">"Face #{}"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">10</span><span class="p">,</span> <span class="n">y</span> <span class="o">-</span> <span class="mi">10</span><span class="p">),</span>
<span class="n">cv2</span><span class="o">.</span><span class="n">FONT_HERSHEY_SIMPLEX</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">for</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="ow">in</span> <span class="n">shape</span><span class="p">:</span>
<span class="n">cv2</span><span class="o">.</span><span class="n">circle</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">),</span> <span class="mi">2</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
cv2.imshow(“Output”, image)
cv2.waitKey(0)
对于每一张检测到的脸,我们进一步检测脸部的特征(鼻子、眼睛、眉毛等)。对于脸部区域,我们用绿色的框在照片上标出;对于脸部特征,我们用红色的点标出来。
最后我们把加了检测标识的照片显示出来,waitKey(0)表示按任意键可退出程序。
以上是我们程序的全部
测试
接下来是令人兴奋的时刻,检验我们结果的时刻到来了。
下面是原图
下面是程序识别的结果
可以看到脸部区域被绿色的长方形框起来了,脸上的特征(鼻子,眼睛等)被红色点点标识出来了。
是不是很简单?
欢迎点赞~
视点赞情况,后续再另开一篇写写怎样实现人脸识别,告诉你照片里的人是谁。
推荐阅读
-
mxnet下mtcnn人脸检测c++版本的实现(1)
pangyupo 实现了一个python的版本, 由于python版本在一些不支持python的系统上不太好移植, 所以决定还是写一个c++版本。因为caffe已经有一个mtcnn c++版本,决定在此基础上改写支持mxnet…
MTCNN人脸检测—PNet网络训练
前言本文主要介绍MTCNN中PNet的网络结构,训练方式和BoundingBox的处理方式。PNet的网络结构是一个全卷积的神经网络结构,如下图所:输入是一个12*12大小的图片,所以训练前需要把生成的训…
人脸检测与识别的趋势和分析
50 行 Python 代码,带你追到最心爱的人
24 条评论
3.6?
加关注,点赞收藏推广了,
实现了,感谢
3.6用户强行重写…
请问windows下可以运行吗?图片image不需要给路径和后缀名?