写文章
50行代码实现人脸检测

50行代码实现人脸检测

319 人 赞了该文章

现在的人脸识别技术已经得到了非常广泛的应用,支付领域、身份验证、美颜相机里都有它的应用。用iPhone的同学们应该对下面的功能比较熟悉

iPhone的照片中有一个“人物”的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术。

这篇文章主要介绍怎样用Python实现人脸检测。人脸检测是人脸识别的基础。人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁。

好了,介绍就到这里。接下来,开始准备我们的环境。

准备工作

本文的人脸检测基于dlib,dlib依赖Boost和cmake,所以首先需要安装这些包,以Ubuntu为例:

$ sudo apt-get install build-essential cmake 
$ sudo apt-get install libgtk-3-dev
$ sudo apt-get install libboost-all-dev

我们的程序中还用到numpy,opencv,所以也需要安装这些库:

$ pip install numpy 
$ pip install scipy
$ pip install opencv-python
$ pip install dlib

人脸检测基于事先训练好的模型数据,从这里可以下到模型数据

dlib.net/files/shape_pr

下载到本地路径后解压,记下解压后的文件路径,程序中会用到。


dlib的人脸特征点

上面下载的模型数据是用来估计人脸上68个特征点(x, y)的坐标位置,这68个坐标点的位置如下图所示:

我们的程序将包含两个步骤:

第一步,在照片中检测人脸的区域

第二部,在检测到的人脸区域中,进一步检测器官(眼睛、鼻子、嘴巴、下巴、眉毛)


人脸检测代码

我们先来定义几个工具函数:

def rect_to_bb(rect): 
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
return (x, y, w, h)

这个函数里的rect是dlib脸部区域检测的输出。这里将rect转换成一个序列,序列的内容是矩形区域的边界信息。


def shape_to_np(shape, dtype="int"): 
coords = np.zeros((68, 2), dtype=dtype)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)