《脑网络与智力:基于图神经网络的静息态fMRI数据研究》|文献速递-视觉大模型医疗图像应用

Title

题目

Brain networks and intelligence: A graph neural network based approach toresting state fMRI data

《脑网络与智力:基于图神经网络的静息态fMRI数据研究》

01

文献速递介绍

智力是一个复杂的构念,由多种认知过程构成。 研究人员通常依赖一系列认知测试来测量不同方面的认知能力,并形成特定的智力测量指标,例如流体智力(fluid intelligence,指在新情境下进行推理和解决问题的能力)(Kyllonen and Kell, 2017),晶体智力(crystallized intelligence,指运用知识和经验解决问题的能力),以及总智力(total intelligence,总体认知能力的综合测量)。人类一直对揭示智力的神经基础以及预测个体智力差异充满兴趣。尽管传统的MRI(磁共振成像)研究主要集中在不同表型的脑结构指标上(Suresh et al., 2023; Ray et al., 2023),但近年来快速发展的研究开始利用脑功能特征来预测智力(Ferguson et al., 2017; He et al., 2020; Dubois et al., 2018)。(Vieira et al., 2022) 的综述进一步指出,功能性磁共振成像(fMRI)已成为预测智力的最常用模式,而基于静息态fMRI(rs-fMRI)的静态功能连接(FC)是最被广泛研究的预测因子。rs-fMRI通过血氧水平依赖(BOLD)信号来测量神经活动响应下的自发脑活动。功能连接(FC)被定义为通过BOLD信号时间序列计算的脑区之间的时间相关性,其能够全面反映大脑的内在组织结构(Lee et al., 2012)。研究验证了默认模式网络与额顶网络之间的功能连接对个体认知能力差异的贡献(Hearne et al., 2016)。

尽管大多数智力预测方法依赖于线性回归模型, 一些研究也采用了非线性方法,例如多项式核支持向量回归(SVR)(Wang et al., 2015)、核岭回归(He et al., 2020)以及深度神经网络(He et al., 2020; Fan et al., 2020; Li et al., 2023)。近年来,图神经网络(Graph Neural Networks, GNNs)因其在端到端图学习应用中的强大性能而受到极大关注,并快速发展。GNNs被认为是分析图结构数据的最先进深度学习方法,因为它们可以针对图中的节点和边设计神经网络,并将节点特征和边特征嵌入图的结构信息中。已有研究探讨了GNNs在社交网络、蛋白质网络以及神经生物标志物等不同领域中的有效性(Kim and Ye, 2020; Kazi et al., 2023; Nandakumar et al., 2021)。考虑到脑网络的图结构特性,通过GNN建模脑连接组已被实现。大多数脑GNN研究利用rs-fMRI的功能连接图(Ktena et al., 2018; Škoch et al., 2022; Wu et al., 2021; Ma et al., 2018),并分类研究对象的特定表型,如性别(Arslan et al., 2018; Kazi et al., 2021)或特定疾病状态(Kazi et al., 2021; Ma et al., 2018),但其在智力预测中的应用仍未被充分探索。

大多数GNN假设节点在整个图中以相同方式学习嵌入, 然而这种假设对于具有子网络特性的脑连接组而言存在问题(Parente and Colosimo, 2020)。最近,BrainGNN(Li et al., 2021)提出了一种新的GNN架构,通过在图卷积层中引入基于聚类的嵌入方法,解决了这一限制,使得不同聚类中的节点(代表不同的脑网络)可以以不同的方式学习嵌入。受BrainGNN启发,我们提出了一种新的GNN模型,称为脑感兴趣区感知图同构网络(Brain ROI-aware Graph Isomorphism Networks,BrainRGIN),用于智力预测。首先,我们使用图同构网络(GIN)(Xu et al., 2018)来增强GNN的表达能力,GIN被设计用于逼近Weisfeiler-Lehman(WL)图同构测试的能力。与BrainGNN类似,我们通过引入感兴趣区(ROI)的聚类表示解决了节点学习机制的限制。通过结合这两种架构,我们的模型能够有效捕获脑区之间的局部和全局关系。此外,我们验证了包括基于注意力的读出方法在内的各种聚合和读出函数。据我们所知,这是首个使用图神经网络结合静息态fMRI数据预测智力的研究。我们在一个大型数据集上评估了所提出模型的性能,并证明了其在预测个体智力差异方面的有效性。

Aastract

摘要

Resting-state functional magnetic resonance imaging (rsfMRI) is a powerful tool for investigating the relationship between brain function and cognitive processes as it allows for the functional organizatio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值