Building My Deep Neural Network: Step by Step

Initialization

Arguments:
layer_dims – python array (list) containing the dimensions of each layer in our network

Returns:
parameters – python dictionary containing your parameters “W1”, “b1”, …, “WL”, “bL”:
Wl – weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl – bias vector of shape (layer_dims[l], 1)

def initialize_parameters_deep(layer_dims):
 
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network

    for l in range(1, L):
    	parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
    	parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))


    
    assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
    assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

	return parameters

Forward propagation module

Linear Forward

The linear forward module (vectorized over all the examples) computes the following equations:

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]} Z[l]=W[l]A[l1]+b[l]

where A [ 0 ] = X A^{[0]} = X A[0]=X.

Arguments:
A – activations from previous layer (or input data): (size of previous layer, number of examples)
W – weights matrix: numpy array of shape (size of current layer, size of previous layer)
b – bias vector, numpy array of shape (size of the current layer, 1)

Returns:
Z – the input of the activation function, also called pre-activation parameter
cache – a python tuple containing “A”, “W” and “b” ; stored for computing the backward pass efficiently

def linear_forward(A, W, b):
    
    Z = np.dot(W,A)+b
    
    assert(Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)
    
    return Z, cache

Linear-Activation Forward

  • Sigmoid: σ ( Z ) = σ ( W A + b ) = 1 1 + e − ( W A + b ) \sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}} σ(Z)=σ(WA+b)=1+e(WA+b)1.
A, activation_cache = sigmoid(Z)
  • ReLU: The mathematical formula for ReLu is A = R E L U ( Z ) = m a x ( 0 , Z ) A = RELU(Z) = max(0, Z) A=RELU(Z)=max(0,Z).
A, activation_cache = relu(Z)
  • These two functions each return two items: the activation value “a” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function).

Arguments:
A_prev – activations from previous layer (or input data): (size of previous layer, number of examples)
W – weights matrix: numpy array of shape (size of current layer, size of previous layer)
b – bias vector, numpy array of shape (size of the current layer, 1)
activation – the activation to be used in this layer, stored as a text string: “sigmoid” or "relu"

Returns:
A – the output of the activation function, also called the post-activation value
cache – a python tuple containing “linear_cache” and “activation_cache”; stored for computing the backward pass efficiently

def linear_activation_forward(A_prev, W, b, activation):
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    
    elif activation == "relu":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)
    
    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)

    return A, cache

L-Layer Model

Arguments:
X – data, numpy array of shape (input size, number of examples)
parameters – output of initialize_parameters_deep()

Returns:
AL – last post-activation value
caches – list of caches containing:
every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1)

def L_model_forward(X, parameters):


    caches = []
    A = X
    L = len(parameters)//2    # number of layers in the neural network
    
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    for l in range(1, L):
        A_prev = A
        A, cache = linear_activation_forward(A, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu") #Input A(=A[l-1])
        caches.append(cache)
        None
    
   
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid")
    caches.append(cache)
    None
    
    assert(AL.shape == (1,X.shape[1]))
            
    return AL, caches

Cost Function

Compute the cross-entropy cost J J J, using the following formula: (7) − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( a [ L ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ L ] ( i ) ) ) -\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) \tag{7} m1i=1m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))(7)

Arguments:
AL – probability vector corresponding to your label predictions, shape (1, number of examples)
Y – true “label” vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

Returns:
cost – cross-entropy cost

def compute_cost(AL, Y):
  
    m = Y.shape[1]
    cost = - np.sum(np.multiply(np.log(AL),Y)+ np.multiply((np.log(1-AL)),1-Y))/m
    cost = np.squeeze(cost)      
    assert(cost.shape == ())
    
    return cost

Backward propagation module

Linear backward

The three outputs ( d W [ l ] , d b [ l ] , d A [ l − 1 ] ) (dW^{[l]}, db^{[l]}, dA^{[l-1]}) (dW[l],db[l],dA[l1]) are computed using the input d Z [ l ] dZ^{[l]} dZ[l].
d W [ l ] = ∂ J ∂ W [ l ] = 1 m d Z [ l ] A [ l − 1 ] T dW^{[l]} = \frac{\partial \mathcal{J} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} dW[l]=W[l]J=m1dZ[l]A[l1]T
d b [ l ] = ∂ J ∂ b [ l ] = 1 m ∑ i = 1 m d Z [ l ] ( i ) db^{[l]} = \frac{\partial \mathcal{J} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)} db[l]=b[l]J=m1i=1mdZ[l](i)
d A [ l − 1 ] = ∂ L ∂ A [ l − 1 ] = W [ l ] T d Z [ l ] dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} dA[l1]=A[l1]L=W[l]TdZ[l]

Arguments:
dZ – Gradient of the cost with respect to the linear output (of current layer l)
cache – tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

Returns:
dA_prev – Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW – Gradient of the cost with respect to W (current layer l), same shape as W
db – Gradient of the cost with respect to b (current layer l), same shape as b

def linear_backward(dZ, cache):
    A_prev, W, b = cache
    m = A_prev.shape[1]

    dW = np.dot(dZ,A_prev.T)/m
    db = np.sum(dZ,axis=1,keepdims=True)/m
    dA_prev = np.dot(W.T,dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW, db

Linear-Activation backward

  • sigmoid_backward: Implements the backward propagation for SIGMOID unit.
dZ = sigmoid_backward(dA, activation_cache)
  • relu_backward: Implements the backward propagation for RELU unit.
dZ = relu_backward(dA, activation_cache)

sigmoid_backward and relu_backward compute (11) d Z [ l ] = d A [ l ] ∗ g ′ ( Z [ l ] ) dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \tag{11} dZ[l]=dA[l]g(Z[l])(11).

Arguments:
dA – post-activation gradient for current layer l
cache – tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation – the activation to be used in this layer, stored as a text string: “sigmoid” or “relu”

Returns:
dA_prev – Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW – Gradient of the cost with respect to W (current layer l), same shape as W
db – Gradient of the cost with respect to b (current layer l), same shape as b

def linear_activation_backward(dA, cache, activation):
   
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
    return dA_prev, dW, db

L-Model Backward

Arguments:
AL – probability vector, output of the forward propagation (L_model_forward())
Y – true “label” vector (containing 0 if non-cat, 1 if cat)
caches – list of caches containing:
every cache of linear_activation_forward() with “relu” (it’s caches[l], for l in range(L-1) i.e l = 0…L-2)
the cache of linear_activation_forward() with “sigmoid” (it’s caches[L-1])

Returns:
grads – A dictionary with the gradients
grads[“dA” + str(l)] = …
grads[“dW” + str(l)] = …
grads[“db” + str(l)] = …

def L_model_backward(AL, Y, caches):
    
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
    # Initializing the backpropagation
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
    current_cache = caches[L-1]
    grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
    
    # Loop from l=L-2 to l=0
    for l in reversed(range(L-1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, activation = "relu")
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp

    return grads

Update Parameters

W [ l ] = W [ l ] − α   d W [ l ] W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} W[l]=W[l]α dW[l]
b [ l ] = b [ l ] − α   d b [ l ] b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} b[l]=b[l]α db[l]

Arguments:
parameters – python dictionary containing your parameters
grads – python dictionary containing your gradients, output of L_model_backward

Returns:
parameters – python dictionary containing your updated parameters
parameters[“W” + str(l)] = …
parameters[“b” + str(l)] = …

def update_parameters(parameters, grads, learning_rate):
 
    L = len(parameters) // 2 # number of layers in the neural network

    # Update rule for each parameter.
    for l in range(L):
        parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*grads["dW" + str(l + 1)]
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*grads["db" + str(l + 1)]

    return parameters
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值