QLoRa 低秩分解+权重量化的微调

本文介绍了QLoRa技术,通过低秩分解减少全连接层和卷积层的参数,随后进行权重量化以降低存储和计算需求。权重量化在INT8量化下能大幅减小存储和计算复杂度,但需平衡模型精度与效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

QLoRa的核心思想是首先使用低秩分解技术降低参数的数量,然后对这些低秩表示的参数应用量化技术,进一步减少所需的存储空间和计算量。

图片

https://arxiv.org/abs/2305.14314

低秩分解

低秩分解(Low-Rank Factorization):通过将模型中的权重矩阵分解为更小的矩阵乘积,减少模型中的参数数量。

参看:LoRA 微调和低秩矩阵

类似下图,4×5 的矩阵变成 4×2 的矩阵跟 2×5 的矩阵乘积:

图片

这种方法特别适用于减少全连接层和卷积层的参数,因为这些层通常包含大量的参数。

权重量化

权重量化(Weight Quantization):在进行低秩分解之后,QLoRa对得到的低秩矩阵进行量化,将浮点数权重转换为低比特宽度的表示形式。

这进一步减少了模型的存储需求和计算复杂度,使模型更适合部署在资源受限的设备上。

下面是一些常见的权重量化方法及其对计算和存储复杂度的影响的比较:

图片

  • 存储复杂度降低:这指的是模型权重存储空间的减少。例如,使用8位整数(INT8)量化时,存储需求是原始32位浮点数(FP32)的1/4,因此存储复杂度降低了4倍。

  • 计算复杂度降低:这主要指的是运行模型所需的计算资源减少。计算复杂度的降低程度取决于特定硬件对不同数据类型操作的支持程度。一般来说,使用低比特宽度进行量化可以显著加速计算,尤其是在支持特定量化操作的硬件上。

需要注意的是,量化的比特宽度越低,对模型精度的潜在影响越大。因此,在选择量化策略时,需要在模型大小、计算效率与模型性能之间做出权衡。此外,实际的存储和计算复杂度降低也取决于特定的模型架构、硬件平台以及量化后的优化程度。

<think>好的,我现在需要帮助用户了解QLoRA微调的使用方法或示例代码。首先,我要回顾一下用户的问题,确保我理解正确。用户明确提到了“qlora微调的使用方法或教程”,并且希望得到示例代码。用户还提供了几个引用资料,我需要参考这些内容,但也要注意用户的上一次问题,不过目前看起来这是用户第一次询问这个问题。 接下来,我需要整理QLoRA的基本概念。QLoRA是一种高效微调大模型的技术,结合了量化(Quantization)、适配器(LoRA)等技术,能在显存环境下进行微调。用户提供的引用中提到了微软的Phi-2模型和Llama模型,所以示例代码可能会用到这些模型。 然后,我需要考虑步骤分解。通常,微调流程包括环境准备、模型和Tokenizer加载、数据集处理、训练配置、训练与评估、保存与应用。我需要将这些步骤逐一解释,并给出对应的代码示例。 在环境准备部分,需要安装必要的库,如transformers、datasets、peft、bitsandbytes等。引用[4]提到了这些库,尤其是peft和bitsandbytes,所以代码中需要体现这些依赖。 加载模型时,要注意4位量化的配置,如bnb_config的设置。引用[1]和[2]中的代码示例展示了如何加载模型,特别是使用AutoModelForCausalLM.from_pretrained并传入quantization_config参数。同时,需要设置device_map和trust_remote_code等参数。 Tokenizer的配置也很重要,引用[2]提到需要设置pad_token为eos_token,并调整padding_side。这部分需要详细说明,以确保数据处理正确。 数据集处理部分,用户可能需要使用自定义数据集,引用[3]提到需要根据具体任务调整数据集。这里需要给出一个简单的示例,比如使用datasets库加载数据,并进行预处理,如添加提示模板。 训练配置时,要使用LoRA的参数,比如r、lora_alpha、target_modules等。引用[3]和[4]提到了使用peft库中的LoraConfig,然后调用get_peft_model将原模型转换为可微调的模型。训练参数如TrainingArguments需要设置输出目录、学习率、批次大小等。 在训练过程中,使用Trainer类,并传入模型、训练参数、数据集等。引用[3]提到可能需要添加学习率调度器或早停法,但示例中可以简化,用户可以根据需要扩展。 最后,保存和应用模型时,要保存适配器部分,并演示如何加载微调后的模型进行推理。这部分需要展示如何合并模型或仅加载适配器,引用[4]提到了HuggingFace的库支持这些操作。 同时,我需要确保代码格式正确,使用Python的代码块,并遵循用户提供的系统级指令,比如行内数学表达式使用$...$,独立公式用$$...$$。不过在这个问题中可能数学公式较少,但如果有的话要注意格式。 用户的问题还要求生成相关问题,我需要考虑用户可能进一步询问的内容,比如QLoRA的原理、显存优化方法、不同模型的适配情况、数据集处理技巧以及微调后的评估方法。 最后,检查所有引用是否正确应用,并确保回答结构清晰,逐步引导用户完成QLoRA微调的过程。同时,保持语言简洁,代码示例明确,避免错误。</think>以下是基于多篇引用资料整理的QLoRA微调使用教程,包含关键步骤和示例代码: ### 一、QLoRA微调核心步骤 1. **环境准备** ```python pip install transformers datasets peft accelerate bitsandbytes ``` 2. **模型加载(4位量化)** ```python from transformers import AutoModelForCausalLM, AutoTokenizer import bitsandbytes as bnb bnb_config = bnb.config.BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( "microsoft/phi-2", # 或替换为meta-llama/Llama-2-7b-hf quantization_config=bnb_config, device_map="auto", trust_remote_code=True ) model.config.use_cache = False # 禁用缓存提高训练效率[^2] ``` 3. **标记器配置** ```python tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") tokenizer.pad_token = tokenizer.eos_token # 对齐填充标记[^2] tokenizer.padding_side = "right" # 右对齐填充 ``` 4. **数据集处理示例** ```python from datasets import load_dataset dataset = load_dataset("your_dataset") def format_prompt(example): return {"text": f"Instruction: {example['instruction']}\nResponse: {example['response']}"} dataset = dataset.map(format_prompt) ``` 5. **训练配置** ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, # 矩阵维度 lora_alpha=32, target_modules=["q_proj", "v_proj"], # 选择注意力层的投影矩阵 lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, lora_config) # 转换为可训练适配器模式[^4] ``` 6. **训练执行** ```python from transformers import TrainingArguments, Trainer training_args = TrainingArguments( output_dir="./output", per_device_train_batch_size=2, gradient_accumulation_steps=4, learning_rate=3e-4, num_train_epochs=2, fp16=True # 半精度训练 ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"] ) trainer.train() ``` 7. **模型保存与应用** ```python model.save_pretrained("./qlora_adapter") # 仅保存适配器权重[^3] # 推理时加载 from peft import PeftModel loaded_model = PeftModel.from_pretrained(base_model, "./qlora_adapter") ``` ### 二、关键配置说明 - **量化配置**:`bnb_4bit_quant_type`支持`nf4`/`fp4`,`bnb_4bit_compute_dtype`建议使用`bfloat16`[^1] - **目标模块**:不同模型需要指定不同的投影层,如Llama常用`q_proj`,`v_proj`,GPT类模型常用`c_attn`[^4] - **内存优化**:通过`gradient_accumulation_steps`降显存消耗[^3] ### 三、典型报错处理 1. **显存不足**:减小`per_device_train_batch_size`,增加`gradient_accumulation_steps` 2. **标记器错误**:确保`pad_token`正确设置,建议与`eos_token`对齐[^2] 3. **精度问题**:启用`fp16=True`或`bf16=True`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值