偏度
偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。定义上偏度是样本的三阶标准化矩。

偏度定义中包括正态分布(偏度=0) 算术平均值 = 中位数 = 众数,
右偏分布(也叫正偏分布,其偏度>0) 众数 < 中位数 < 算术平均值,
左偏分布(也叫负偏分布,其偏度<0) 算术平均值 < 中位数 < 众数。

为了在模型中避免因为偏度问题带来的误差,通常可以使用对数来达到目的
偏度
偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。定义上偏度是样本的三阶标准化矩。

偏度定义中包括正态分布(偏度=0) 算术平均值 = 中位数 = 众数,
右偏分布(也叫正偏分布,其偏度>0) 众数 < 中位数 < 算术平均值,
左偏分布(也叫负偏分布,其偏度<0) 算术平均值 < 中位数 < 众数。

为了在模型中避免因为偏度问题带来的误差,通常可以使用对数来达到目的
您可能感兴趣的与本文相关的镜像
Stable-Diffusion-3.5
Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率
1055
4万+

被折叠的 条评论
为什么被折叠?