python时间序列数据归一化与反归一化

本文介绍了如何利用Python的sklearn库中的MinMaxScaler对时间序列数据进行归一化处理,使其缩放至0到1之间。之后,还展示了如何将归一化后的数据恢复到原始值,即反归一化的过程。这种方法在数据分析和机器学习中常用,以确保不同尺度的数据能公平比较。
摘要由CSDN通过智能技术生成

时间序列数据归一化归一化与反归一化

from sklearn.preprocessing import MinMaxScaler
# 数据归一化
scaler = MinMaxScaler() #默认范围为(0,1),可以更改
scaled_data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns, index=data.index)
# 将标准化后的数据转换为原始数据(反归一化)
pd.DataFrame(scaler.inverse_transform(scaled_data), columns=data.columns, index=data.index)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NSummer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值