SPERT:一种从文本中抽取关系方法

导语

spert: 一种以变压器网络BERT为核心的联合实体和关系提取模型。采用基于span的方法:任何标记子序列(或span)构成一个潜在的实体,任何一对span之间都可以保持关系。


论文题目:Span-based Joint Entity and Relation Extraction with Transformer Pre-trainin

论文链接:https://arxiv.org/abs/1909.07755
论文代码:https://github.com/markus-eberts/spert


任务目标:关系抽取

即从一句话中提取实体与关系,构成一个三元组

比如:

"xiao ming started in xiao zhang`s Happy comedians"

我们的目标是获取三元组

("xiao ming",Plays-In,"comedians")

或者

("comedians",Director,"xiao ming")

下面是这个模型整体的架构图:

span classification(span分类)

红色方块表示实体

黄色方块表示文本内容

蓝色方块表示span长度信息

绿色方块表示整个句子的语义

表示向量合并操作

span的表示:

c表示整个句子语义嵌入

使用softmax分类器分类span(softmax分类器会在后续文章中详细介绍)

  1. 首先定义好entity目录,比如person、organization;

  2. span被分类为  中的类别,或者none(表示span不包含实体);

  3. span使用BERT来做嵌入操作(就是将其转化为特征向量);

  4. 定义一个fusion function(融合函数):来融合嵌入后的向量,这篇论文就是选用了一个比较好的融合函数max-pooling;

  5.  表示span的长度嵌入,目的是把span的长度信息融合span的特征向量中,因为太长的span不可能表示实体;

span filtering (span过滤)

过滤掉被分类到none类别的span和长度超过10的span(太长的不可能是实体)

relation classification(关系分类)

在两个相邻的实体之间,通过BERT和max-pooling,我们获得一个语义嵌入c(S1,S2)关系是不对称的,所以考虑S1和S2的顺序,通过两个单位向量进行处理

两者经过一个单层的分类器, 表示sigmoid函数

定义一个临界值 ,比较y和的值来确定x是否是实体关系三元组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值