大语言模型-中文Langchain

文章介绍了如何结合ChatGLM大语言模型与langchain库,实现对本地知识库的向量检索和智能答案生成。通过配置本地模型文件、检索模型文件和文档路径,使用FAISS进行向量存储和检索,同时集成web搜索功能,以增强回答能力。
摘要由CSDN通过智能技术生成

中文Langchain

使用chatGLM6b + langchain实现本地化知识库检索与智能答案生成

https://github.com/yanqiangmiffy/Chinese-LangChain

https://github.com/LongxingTan/open-retrievals

配置

class LangChainCFG:
    llm_model_name = 'chatglm-6b'  # 本地模型文件 or huggingface远程仓库
    embedding_model_name = 'text2vec-large-chinese'  # 检索模型文件 or huggingface远程仓库
    vector_store_path = '.'
    docs_path = './docs'

向量近邻检索

文本进行向量化后存入数据库,还不清楚langchain包里的FAISS做了哪些改变

class SourceService(object):
    def __init__(self, config):
        self.vector_store = None
        self.config = config
        self.embeddings = HuggingFaceEmbeddings(model_name=self.config.embedding_model_name)
        self.docs_path = self.config.docs_path
        self.vector_store_path = self.config.vector_store_path

    def init_source_vector(self):
        """
        初始化本地知识库向量
        :return:
        """
        docs = []
        for doc in os.listdir(self.docs_path):
            if doc.endswith('.txt'):
                print(doc)
                loader = UnstructuredFileLoader(f'{self.docs_path}/{doc}', mode="elements")
                doc = loader.load()
                docs.extend(doc)
        self.vector_store = FAISS.from_documents(docs, self.embeddings)
        self.vector_store.save_local(self.vector_store_path)

    def add_document(self, document_path):
        loader = UnstructuredFileLoader(document_path, mode="elements")
        doc = loader.load()
        self.vector_store.add_documents(doc)
        self.vector_store.save_local(self.vector_store_path)

    def load_vector_store(self, path):
        if path is None:
            self.vector_store = FAISS.load_local(self.vector_store_path, self.embeddings)
        else:
            self.vector_store = FAISS.load_local(path, self.embeddings)
        return self.vector_store

    def search_web(self, query):

        SESSION.proxies = {
            "http": f"socks5h://localhost:7890",
            "https": f"socks5h://localhost:7890"
        }
        results = ddg(query)
        web_content = ''
        if results:
            for result in results:
                web_content += result['body']
        return web_content

chatGLM

调用chatGLM

from typing import List, Optional

from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoModel, AutoTokenizer


class ChatGLMService(LLM):
    max_token: int = 10000
    temperature: float = 0.1
    top_p = 0.9
    history = []
    tokenizer: object = None
    model: object = None

    def __init__(self):
        super().__init__()

    @property
    def _llm_type(self) -> str:
        return "ChatGLM"

    def _call(self,
              prompt: str,
              stop: Optional[List[str]] = None) -> str:
        response, _ = self.model.chat(
            self.tokenizer,
            prompt,
            history=self.history,
            max_length=self.max_token,
            temperature=self.temperature,
        )
        if stop is not None:
            response = enforce_stop_tokens(response, stop)
        self.history = self.history + [[None, response]]
        return response

    def load_model(self,
                   model_name_or_path: str = "THUDM/chatglm-6b"):
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        self.model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda()
        self.model=self.model.eval()  
    

langchain

道理还是一样,把搜索的结果包装成prompt之后调用LLM

class LangChainApplication(object):
    def __init__(self, config):
        self.config = config
        self.llm_service = ChatGLMService()
        self.llm_service.load_model(model_name_or_path=self.config.llm_model_name)
        self.source_service = SourceService(config)
        if self.config.kg_vector_stores is None:
            print("init a source vector store")
            self.source_service.init_source_vector()
        else:
            print("load zh_wikipedia source vector store ")
            try:
                self.source_service.load_vector_store(self.config.kg_vector_stores['初始化知识库'])
            except Exception as e:
                self.source_service.init_source_vector()

    def get_knowledge_based_answer(self, query,
                                   history_len=5,
                                   temperature=0.1,
                                   top_p=0.9,
                                   top_k=4,
                                   web_content='',
                                   chat_history=[]):
        if web_content:
            prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。
                                如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
                                已知网络检索内容:{web_content}""" + """
                                已知内容:
                                {context}
                                问题:
                                {question}"""
        else:
            prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
                                            如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
                                            已知内容:
                                            {context}
                                            问题:
                                            {question}"""
        prompt = PromptTemplate(template=prompt_template,
                                input_variables=["context", "question"])
        self.llm_service.history = chat_history[-history_len:] if history_len > 0 else []

        self.llm_service.temperature = temperature
        self.llm_service.top_p = top_p

        knowledge_chain = RetrievalQA.from_llm(
            llm=self.llm_service,
            retriever=self.source_service.vector_store.as_retriever(
                search_kwargs={"k": top_k}),
            prompt=prompt)
        knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
            input_variables=["page_content"], template="{page_content}")

        knowledge_chain.return_source_documents = True

        result = knowledge_chain({"query": query})
        return result

# if __name__ == '__main__':
#     config = LangChainCFG()
#     application = LangChainApplication(config)
#     result = application.get_knowledge_based_answer('马保国是谁')
#     print(result)
#     application.source_service.add_document('/home/searchgpt/yq/Knowledge-ChatGLM/docs/added/马保国.txt')
#     result = application.get_knowledge_based_answer('马保国是谁')
#     print(result)

web search

from duckduckgo_search import ddg
from duckduckgo_search.utils import SESSION


SESSION.proxies = {
    "http": f"socks5h://localhost:7890",
    "https": f"socks5h://localhost:7890"
}
r = ddg("马保国")
print(r[:2])
"""
[{'title': '马保国 - 维基百科,自由的百科全书', 'href': 'https://zh.wikipedia.org/wiki/%E9%A9%AC%E4%BF%9D%E5%9B%BD', 'body': '马保国(1951年 — ) ,男,籍贯 山东 临沂,出生及长大于河南,中国大陆太极拳师,自称"浑元形意太极门掌门人" 。 马保国因2017年约战mma格斗家徐晓冬首次出现
大众视野中。 2020年5月,马保国在对阵民间武术爱好者王庆民的比赛中,30秒内被连续高速击倒三次,此事件成为了持续多日的社交 ...'}, {'title': '馬保國的主页 - 抖音', 'href': 'https://www.douyin.com/user/MS4wLjABAAAAW0E1ziOvxgUh3VVv5FE6xmoo3w5WtZalfphYZKj4mCg', 'body': '6.3万. #马马国教扛打功 最近有几个人模芳我动作,很危险啊,不可以的,朋友们不要受伤了。. 5.3万. #马保国直播带货榜第一 朋友们周末愉快,本周六早上湿点,我本人在此号进行第一次带货直播,活到老,学到老,越活越年轻。. 7.0万. #马保国击破红牛罐 昨天 ...'}]
"""

webui

采用transformers的gradio

huggingface space

  • https://huggingface.co/spaces/launch
  • https://huggingface.co/docs/hub/spaces
  • 可以使用github actions 同步:https://github.com/marketplace/actions/sync-with-hugging-face-hub
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YueTann

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值