环境及版本依赖
依赖 | 版本 |
---|---|
系统 | win10 |
cuda/cudnn | 10.0/7.6.0 |
python | 3.6 |
tensorflow-gpu | 1.9 |
object_detection | https://github.com/tensorflow/models/tree/v1.13.0/research/object_detection |
主要流程
1 安装环境以及下载对应的项目代码
2 将\models\research\slim 加入PYTHONPATH,或者cd research/slim , python setup.py build , python setup.py install
3 编译Protobuf以及安装该API,powershell可以使用.*通配符
4 执行setup将object_detection安装到site-pachages中去
5 判断该API是否安装成功以及测试官方demo
6 标注训练集,xml转csv
7 csv训练集转换为TF Recode格式
8 下载预训练的模型的配置文件,然后进行相关配置,如果class不需要的话只填写1就好了,label.ckpt中写一个item就好了
9 训练,step最少20000,训练集数量最好>=400
10 转换动态模型为冻结模型pb
11 测试模型的训练效果