object_detetion训练滑块型验证码参考和总结

本文介绍了使用TensorFlow Object Detection API训练滑块验证码的详细步骤,包括环境配置、模型配置、数据标注、训练过程及模型转换。提供相关链接资源和注意事项。
摘要由CSDN通过智能技术生成
环境及版本依赖
依赖 版本
系统 win10
cuda/cudnn 10.0/7.6.0
python 3.6
tensorflow-gpu 1.9
object_detection https://github.com/tensorflow/models/tree/v1.13.0/research/object_detection
主要流程

1 安装环境以及下载对应的项目代码
2 将\models\research\slim 加入PYTHONPATH,或者cd research/slim , python setup.py build , python setup.py install
3 编译Protobuf以及安装该API,powershell可以使用.*通配符
4 执行setup将object_detection安装到site-pachages中去
5 判断该API是否安装成功以及测试官方demo
6 标注训练集,xml转csv
7 csv训练集转换为TF Recode格式
8 下载预训练的模型的配置文件,然后进行相关配置,如果class不需要的话只填写1就好了,label.ckpt中写一个item就好了
9 训练,step最少20000,训练集数量最好>=400
10 转换动态模型为冻结模型pb
11 测试模型的训练效果

特别注
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值