Mask guide matting via progressive refienment network(2020,trimap)

Mask guide matting via progressive refienment network(2020,trimap)

在这里插入图片描述

  • 网络结构:
    • Unet结构,resnet34 添加ASPP,
    • 主要思想是协调高低层特征的学习,主要提出了PRM方式去学习,对于每一层的alpha matte输出,都有一个监督信号,按照alpha的值在0-1的时候,将其位置设为1,用于表示仍然需要学习的区域,当alpha的值为0或者1时,将其位置设为0,表示已经学好的位置,
    • 实际使用的是步长为8,4,1的特征图进行alpha matte预测,
      损失函数:
    • 损失函数为alpha的L1损失, composition 损失,拉普拉斯损失,因为使用了3个不同尺度的特征图预测,因此每层都进行loss计算
    • 优于前景颜色预测与alpha matte预测一同输出,降低了matting的表现,因为RAB会破坏语义信息,
      在这里插入图片描述
  • 训练方式:
    • 数据增强:随机组合两个前景目标,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值