Mask guide matting via progressive refienment network(2020,trimap)
- 网络结构:
- Unet结构,resnet34 添加ASPP,
- 主要思想是协调高低层特征的学习,主要提出了PRM方式去学习,对于每一层的alpha matte输出,都有一个监督信号,按照alpha的值在0-1的时候,将其位置设为1,用于表示仍然需要学习的区域,当alpha的值为0或者1时,将其位置设为0,表示已经学好的位置,
- 实际使用的是步长为8,4,1的特征图进行alpha matte预测,
损失函数: - 损失函数为alpha的L1损失, composition 损失,拉普拉斯损失,因为使用了3个不同尺度的特征图预测,因此每层都进行loss计算
- 优于前景颜色预测与alpha matte预测一同输出,降低了matting的表现,因为RAB会破坏语义信息,
- 训练方式:
- 数据增强:随机组合两个前景目标,