【机器学习实战】第五章:Logistics回归

主要思想:

根据现有数据对分类边界建立回归公司,以此进行分类;

目的:

寻找最佳拟合参数,使用的是最优化算法。

一般过程:

  1. 收集数据:采用任意方法收集数据。
  2. 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
  3. 分析数据:采用任意方法对数据进行分析。
  4. 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
  5. 测试算法:一旦训练步骤完成,分类将会很快。
  6. 使用算法:首先,我们需要一些输入数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一下其他分析工作。

优缺点:

优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高

Sigmoid函数:

得到一个0~1之间的数值

基于最优化方法的最佳回归系数确定:

Sigmoid函数的输入记为z,z=W0X0 + W1X1 + ... WnXn
z = wTx

梯度上升法

思想

要找到某函数的最大值,最好的方法时沿着该函数的梯度方向探寻
w := w + α▽wf(w)
该公式将一直被迭代执行,直至达到某个停止条件为止。

梯度下降法

与梯度上升法一致,加号变减号

训练算法

梯度上升法伪代码:
每个回归系数初始化为1
重复R次:
 计算整个数据集的梯度
 使用`alpha  x  gradient`更新回归系数的向量
返回回归系数
logRegress.py
from numpy import *
import matplotlib.pyplot as plt
#加载数据
def loadData():
    dataMat = []
    labelMat = []
    fr = open("G:/kaggle/pratice/machinelearninginaction-master/Ch05/testSet.txt")
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

#阶跃函数
def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn,classLabel):
    dataMatrix = mat(dataMatIn)#将dataMatIn转为矩阵,每行代表一个训练样本
    labelMat = mat(classLabel).transpose()#将classLabel转为矩阵并且进行转置
    m,n = shape(dataMatrix) #获取dataMatrix的形状性质
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1)) #初始化回归系数为1

    #计算整个数据集的梯度
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose()  * error
    return weights

def plotBestFit(weight):
    weights = weight.getA() #转换为array
    dataMat,labelMat = loadData()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] #获取长度
    xcord1 = [] ; ycord1 = []
    xcord2 = [] ; ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s = 30,c ='red',marker = 's')
    ax.scatter(xcord2,ycord2,s = 30,c = 'green')
    x = arange(-3.0,3.0,0.1) #从-3.0 到 3.0 步长为0.1
    #这里设定0 = w0x0 + w1x1 + w2x2,其中x0=1,x1=x,y=x2,求得x2 = (-w0x0-w1x1)/w2
    #最佳拟合直线
    y = (-weights[0] - weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

dataMat,labelMat = loadData()
wei = gradAscent(dataMat,labelMat)
plotBestFit(wei)
显示结果:
logRegress.png
随机梯度上升算法伪代码:
所有回归系数初始化为1:
对数据及中每个样本:
 计算该样本的梯度
 使用`alpha  x gradient 更新回归系数值`
返回回归系数值
def stocGradAscent0(dataMatrix,classLabel):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i] * weights))
        error = classLabel[i] - h
        weights = weights + alpha * error * dataMatrix[i] 
    return weights

dataMat,labelMat = loadData()
wei = stocGradAscent0(array(dataMat),labelMat)
plotBestFit(wei)

注:此次调用plotBestFit()函数时,要将weight = weights.getA()注释掉,因为此时的weight为array,不需要转换
logregress2
回归系数与迭代此时的关系图:
其中:x0红色,x1绿色,x2l蓝色
代码如下:
def stocGradAsscent(dataMatrix,classLabel):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    weights0 = []
    weights1 = []
    weights2 = []
    for j in range(200):
        for i in range(m):
            h = sigmoid(sum(dataMatrix[i] * weights))
            error = classLabel[i] - h
            weights = weights + alpha * error * dataMatrix[i]
            weights0.append(weights[0])
            weights1.append(weights[1])
            weights2.append(weights[2])
    return weights,weights0,weights1,weights2

def plotLiner(weights0,weights1,weights2):
    fig =plt.figure()
    ax = fig.add_subplot(111)
    y = list(range(20000))
    ax.plot(y,weights0,c = 'red')
    ax.plot(y,weights1,c = 'green')
    ax.plot(y,weights2)
    plt.xlabel('iteration')
    plt.ylabel('X')
    plt.show()

dataMat,labelMat = loadData()
wei,weights0,weights1,weights2 = stocGradAsscent(array(dataMat),labelMat)
plotLiner(weights0,weights1,weights2)

结果如图所示:
收敛效果图
由图可发现,weights1最先达到稳定,而weights0和weights2则需要更多的迭代次数

改进随机梯度上升算法

def stocGradAscent1(dataMatrix,classLabel,numIter = 150):
    m,n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i) + 0.01
            randIndex = int(random.uniform(0,len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabel[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
    return weights

dataMat,labelMat = loadData()
weights = stocGradAscent1(array(dataMat),labelMat)
plotBestFit(weights)
结果:
各参数变化:
代码参照上边收敛做法。

由图可得,收敛速度明显加快




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值