yolov5,android部署注意点

这篇博客记录了YOLOv5模型在Android设备上的部署过程,包括模型训练时的数据集格式、超参数调整,以及预测代码的修改。在训练阶段,作者提到了yaml配置文件的修改和标签文件的格式。预测阶段,强调了需要修改的代码部分。部署到Android时,遇到的问题如模型导出的批次大小、保持模型名称一致以及输出维度的调整。最后,博主提示部署中数据处理的重要性。
摘要由CSDN通过智能技术生成

yolov5实践纪录,

模型训练
训练时需要修改的几个地方,
不论如何,先git下载代码,然后下载单独的模型,在根目录下yolov5s.pt文件。
data文件夹下修改,yaml文件
举例:


train: ../train/images
val: ../valid/images

nc: 2
names: ['mask', 'no-mask']

数据集格式
在这里插入图片描述
labels每个文件和images每个图片原文件相同,文件内容,每行包含识别的标签,和每个预测框的初始坐标和长宽。一个文件可以包含多行,即包含多个预测目标

训练的时候需要修改的几个超参数的地方

	parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default=ROOT / 'models/yolov5s.yaml', help='model.yaml path')
    # parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument('--data', type=str, default=ROOT / 'data/mask_kouzhao.yaml', help='dataset.yaml path')
    # parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=10)
    # parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
    # parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    parser.add

参考如上

预测
上代码:

@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path

主要就这三个地方需要修改

单独写一个预测文件flask部署识别问题,明天再代码补上。

导出
导出时需要注意的几个点,批次的修改,修改为16,不知道是不是对最后问题的原因,待定。
部署在Android时,如有问题,需要卸掉软件重新安装,Android端导入的模型需要与原来的名字相同,yolos…plt
输出维度你的修改需要做输出类别加5,的操作。
然后,然后好像就可以了哇

部署

数据处理的问题

不放张图不足以慰风尘
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值