k-近邻算法进一步看看

机器学习之距离公式

在机器学习过程中,对于函数 dist(., .)dist(.,.),若它是一"距离度量" (distance measure),则需满足一些基本性质:

非负性:
同一性:
对称性:
直递性:

放点官方的,做钻牛角思考
直递性常被直接称为“三角不等式”。

欧式距离(Euclidean Distance):
在这里插入图片描述曼哈顿距离(Manhattan Distance)
在这里插入图片描述

切比雪夫距离 (Chebyshev Distance):
在这里插入图片描述闵可夫斯基距离(Minkowski Distance):
闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

在这里插入图片描述

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。
and so on
“连续属性”和“离散属性”的距离计算
我们常将属性划分为"连续属性" (continuous attribute)和"离散属性" (categorical attribute),前者在定义域上有无穷多个可能的取值,后者在定义域上是有限个取值.

若属性值之间存在序关系,则可以将其转化为连续值,例如:身高属性“高”“中等”“矮”,可转化为{1, 0.5, 0}。
闵可夫斯基距离可以用于有序属性。
若属性值之间不存在序关系,则通常将其转化为向量的形式,例如:性别属性“男”“女”,可转化为{(1,0),(0,1)}。

拓展

在这里插入图片描述
如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。

举例:

X=[[1,1],[2,2],[3,3],[4,4]];(假设两个分量的标准差分别为0.5和1)
经计算得:
d = 2.2361 4.4721 6.7082 2.2361 4.4721 2.2361

解决前面距离单位不统一问题

余弦距离(Cosine Distance)
几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。

二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

在这里插入图片描述夹角余弦取值范围为[-1,1]。余弦越大表示两个向量的夹角越小,余弦越小表示两向量的夹角越大。当两个向量的方向重合时余弦取最大值1,当两个向量的方向完全相反余弦取最小值-1。

举例:

X=[[1,1],[1,2],[2,5],[1,-4]]
经计算得:
d = 0.9487 0.9191 -0.5145 0.9965 -0.7593 -0.8107

汉明距离(Hamming Distance)【了解】:
两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。

汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。

应用:汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。

举例:

X=[[0,1,1],[1,1,2],[1,5,2]]
注:以下计算方式中,把2个向量之间的汉明距离定义为2个向量不同的分量所占的百分比。

经计算得:
d = 0.6667 1.0000 0.3333

杰卡德距离(Jaccard Distance)【了解】:
杰卡德相似系数(Jaccard similarity coefficient):两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示:

在这里插入图片描述举例:

X=[[1,1,0],[1,-1,0],[-1,1,0]]
注:以下计算中,把杰卡德距离定义为不同的维度的个数占“非全零维度”的比例
经计算得:
d = 0.5000 0.5000 1.0000

马氏距离(Mahalanobis Distance)【了解】
下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。

**

k值的选择

**

K值过小:
容易受到异常点的影响(最近点错误引起,K值在拟合过程中相当于过滤,样本在拟合过程中相当于逼近
容易过拟合
近似误差小,学的太好了

k值过大:
受到样本均衡的问题(平均值拉偏了近似值
容易欠拟合

近似误差:
对现有训练集的训练误差,关注训练集,
如果近似误差过小可能会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。
模型本身不是最接近最佳模型。
估计误差:
可以理解为对测试集的测试误差,关注测试集,
估计误差小说明对未知数据的预测能力好,
模型本身最接近最佳模型。

在这里插入图片描述举个例子:
书呆子,过拟合
一般人,正常
差学生,欠拟合

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值