1050ti显卡安装cuda
<div class="operating">
<a class="href-article-edit slide-toggle">版权</a>
</div>
</div>
</div>
</div>
<div id="blogHuaweiyunAdvert"><div class="column-group " data-id="142504" data-url="https://devpress.csdn.net/hpc?utm_source=blog_detail" data-report-click="{"spm":"1001.2101.3001.8542"}"> <div class="column-group-item"> <div class="item-l"> <a class="item-target" href="javascript:;" title="高性能计算社区"> <img class="item-target" src="https://devpress.csdnimg.cn/1db9cd66ffe840cf92b6914c2c04fbe1.png" alt=""> <span class="title item-target"> <span> <span class="tit">高性能计算社区</span> <span class="dec">文章已被社区收录</span> </span> </span> </a> </div> <div class="item-r"> <a class="item-target article-column-bt join-huawei-community">加入社区</a> </div> </div> </div></div>
<article class="baidu_pl">
<div id="article_content" class="article_content clearfix">
<link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/kdoc_html_views-1a98987dfd.css">
<link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/ck_htmledit_views-25cebea3f9.css">
<div id="content_views" class="markdown_views prism-atom-one-dark">
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
<path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
</svg>
<h1><a name="t0"></a><a id="win101050tipytorchgpu_0"></a>win10+1050ti下安装<a href="https://so.csdn.net/so/search?q=pytorch&spm=1001.2101.3001.7020" target="_blank" class="hl hl-1" data-report-click="{"spm":"1001.2101.3001.7020","dest":"https://so.csdn.net/so/search?q=pytorch&spm=1001.2101.3001.7020","extra":"{\"searchword\":\"pytorch\"}"}" data-tit="pytorch" data-pretit="pytorch">pytorch</a>-gpu</h1>
1.安装CUDA
1.1显卡状况查看
1.1.1打开设备管理器
可见答主本机有一个集成显卡和一个独立显卡 1050ti
1.1.2 在桌面单击鼠标右键,选择NVIDIA 控制面板,并打开
在NVIDIA控制面板界面顶栏选择帮助->系统信息打开
进入组件界面,在3D设置一项内可见名为NVCUDA64.DLL文件,在文件对应产品名称一栏可见当前硬件支持的CUDA版本(对答主本机来说为CUDA11.1)
另外在正式安装CUDA若显卡驱动可以更新的可以先更新一下显卡驱动
1.2 CUDA下载
在了解了对应支持的cuda版本后便可以到nvidia官网下载对应版本的cuda了
进入安装网页,点击此处
对于不能翻墙无法打开网页的用户可以试试将网页链接里的.com后缀跟换为.cn后缀(答主亲测有效),包括后面下载对应得CUDA时也可以将.com改为.cn,具体解释可以参考这篇博文
找到你需要安装的CUDA版本(以CUDA10.1为例)
点击进入安装选择,
可以根据自己的需要选择installer type(推荐exe[local])
1.3 CUDA安装
下载好.exe文件后,直接双击打开,显示临时解压文件位置
可更改为你想解压到的位置,点击OK,等待系统检查,授权许可,
接下来在安装选项中选择自定义安装,并将VS勾选去掉(否者安装过程容易退出)
请添加图片描述
下一步,到达指定安装位置,可以更改为自己想要安装到的位置
例如答主便将其改到了新建的D:\cuda\NVIDIA GPU Computing Toolkit文件夹下
然后便静静等待安装完成即可
1.4 对应环境变量配置
在安装完成后打开系统环境变量,进行配置,如下图
在系统变量Path中检查:以下四条环境变量是否添加(以答主本机为例,自查时请将D:\cuda\NVIDIA GPU Computing Toolkit替换为自己的安装路径)
1.D:\cuda\NVIDIA GPU Computing Toolkit
2.D:\cuda\NVIDIA GPU Computing Toolkit\lib\x64
3.D:\cuda\NVIDIA GPU Computing Toolkit\bin
4.D:\cuda\NVIDIA GPU Computing Toolkit\libnvvp
1.5 验证
以上内容配置好后可在终端输入nvcc -V
进行验证
2. cudnn下载
2.1 cudnn的下载
进入 网页,点击下载cuDNN
之后会需要你注册一个账号,按照程序引导,注册就好了,注册完后再点击下载cuDNN便会进入下一界面
选择对应的cuDNN下载,我这里下载与cuda10.1相匹配的
将下载下来的cudnn文件解压,并用解压出的文件直接替换cuda安装目录下的文件
3. 安装pytorch-gpu
3.1 创建新的虚拟环境
安装anaconda,并利用conda配置一个新的虚拟环境并激活
conda create -n torch_gpu python=3.7
conda activate torch_gpu
3.2 安装pytorch
进入官网,根据官网上的提示选择好后输入命令并运行
conda install pytorch torchvision cudatoolkit=10.1 -c python
- 1
或者点击网页,下载对应torch和torchvision的wheel版本
下载完成后,将终端cd到安装路径下并输入以下命令
pip install torch-1.3.0-cp37-cp37m-win_amd64.whl
pip install torchvision-0.4.1-cp37-cp37m-win_amd64.whl
- 1
- 2
等待安装完成,待安装完成后
输入 python
进入终端
import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count())
- 1
- 2
- 3
验证成功