第一课:线性空间的特点

线性空间的特点
坐标系,正交基,矩阵一一对应
在三维线性空间中,如果存在三个向量a_1, a_2, a_3, 满足a_1, a_2, a_3线性无关,并且三维线性空间中的任何一个向量都可以由a_1, a_2, a_3 线性表示,那么a_1, a_2, a_3 就是三维线性空间中的一个基,表示系数就是这个基的坐标。如果a_1, a_2, a_3正交,则这组基就叫正交基。并且正交基a_1, a_2, a_3作为列向量可以形成一个矩阵M,作为坐标轴,则可以形成一个直角坐标系。并且直角坐标系,正交基, 矩阵M一一对应。
二维图示
为了画图方便,以二维情况为例,其实三维也是一样的,只要加上Z轴就可以了,,看下面的三个坐标系,每个坐标系的二个轴就是一组基,每一组基就对应一个矩阵.
                                       


坐标系,坐标轴,正交基,矩阵对应关系如下:


坐标系x_1oy_1 <=> ox_1,  oy_1 <=> [█(1@0)],   [█(0@1)] <=> [■(1&0@0&1)]
坐标系x_2oy_2 <=> ox_2,  oy_2 <=> [█(cos45@sin45)],   [█(-cos45@sin45)] <=> [■(cos45&-cos45@sin45&sin45)]
坐标系x_3oy_3 <=> ox_3,  oy_3 <=> [█(-cos45@-sin45)],   [█(cos45@-sin45)] <=> [■(-cos45&cos45@-sin45&-sin45)]


重要性
以上知识都是大学线性代数的知识,如果没有印象的话,可以看<<线性代数(第五版)].同济大学>>第六章”线性空间与线性变换的”。坐标系,基,矩阵的一一对应是整个图形学变换的基础,掌握了这种对应关系,图形学里有关各种变换,坐标系转换及整个渲染流程就很容易理解了。






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值